INSTALLATION INSTRUCTIONS
FOR UPFLOW/HORIZONTAL & DOWNFLOW TWO-STAGE
INDUCED DRAFT GAS FURNACES
RGPQ UPFLOW/HORIZONTAL SERIES
RGLQ DOWNFLOW SERIES

RECOGNIZE THIS SYMBOL AS AN INDICATION OF IMPORTANT SAFETY INFORMATION!

WARNING
IF THE INFORMATION IN THESE INSTRUCTIONS IS NOT FOLLOWED EXACTLY, A FIRE OR EXPLOSION MAY RESULT, CAUSING PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

WARNING
THESE INSTRUCTIONS ARE INTENDED AS AN AID TO QUALIFIED SERVICE PERSONNEL FOR PROPER INSTALLATION, ADJUSTMENT AND OPERATION OF THIS UNIT. READ THESE INSTRUCTIONS THOROUGHLY BEFORE ATTEMPTING INSTALLATION OR OPERATION. FAILURE TO FOLLOW THESE INSTRUCTIONS MAY RESULT IN IMPROPER INSTALLATION, ADJUSTMENT, SERVICE OR MAINTENANCE, POSSIBLY RESULTING IN FIRE, ELECTRICAL SHOCK, CARBON MONOXIDE POISONING, EXPLOSION, PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

WARNING
PROPOSITION 65 WARNING: THIS PRODUCT CONTAINS CHEMICALS KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER, BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM.

— Do not store or use gasoline or other flammable vapors and liquids, or other combustible materials in the vicinity of this or any other appliance.
— WHAT TO DO IF YOU SMELL GAS
 • Do not try to light any appliance.
 • Do not touch any electrical switch; do not use any phone in your building.
 • Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
 • If you cannot reach your gas supplier, call the fire department.
 • Do not return to your home until authorized by the gas supplier or fire department.
— DO NOT RELY ON SMELL ALONE TO DETECT LEAKS. DUE TO VARIOUS FACTORS, YOU MAY NOT BE ABLE TO SMELL FUEL GASES.
 • U.L. recognized fuel gas and CO (Carbon Monoxide) detectors are recommended in all applications, and their installation should be in accordance with the manufacturer’s recommendations and/or local laws, rules, regulations, or customs.
— Improper installation, adjustment, alteration, service or maintenance can cause injury, property damage or death. Refer to this manual. Installation and service must be performed by a qualified installer, service agency or the gas supplier. In the commonwealth of Massachusetts, installation must be performed by a licensed plumber or gas fitter for appropriate fuel.

DO NOT DESTROY THIS MANUAL. PLEASE READ CAREFULLY AND KEEP IN A SAFE PLACE FOR FUTURE REFERENCE BY A SERVICEMAN.
Before beginning any troubleshooting procedure, complete the following installation checklist. A furnace malfunction is sometimes caused by an improper installation. By completing this checklist, the problem may be found and corrected. Make copies of the checklist and complete one for every Low Profile Furnace service call for your records.

INSTALLATION CHECKLIST
(Refer to this manual for specifics.)

GAS SUPPLY
- _______ Adequate pipe size
- _______ No gas leaks
- _______ Proper supply and manifold gas pressure (check with an accurate U-tube manometer with the furnace and all other gas appliances operating.)

ELECTRICAL
- _______ Correct thermostat and subbase
- Thermostat model _______ Subbase model
- _______ Correct thermostat mode and setting
- _______ Correct line supply voltage
- _______ Correct power supply polarity is required with electronic ignition
- _______ Correct furnace ground to electrical panel
- _______ DC microamp (µA) flame signal (hot surface ignition units)
- _______ Correct control voltage
- _______ Measure and set heat anticipator amperage
- _______ Air conditioning low voltage wires connected to terminals “Y” “C” - **not with wire nuts**

VENTING
- _______ Correct vent pipe diameter and length (according to CSA tables) _______ Vent connection size
- _______ Correct venting material (according to CSA tables)
- _______ Correct lining for masonry chimneys
- _______ Adequate clearance from combustibles
- _______ Proper negative pressure reading in the vent
- _______ Vent pipe secured to induced draft blower housing

COMBUSTION AIR
- _______ Proper source of combustion air
- _______ Correct combustion air opening size
- _______ Optional attic combustion air pull
- _______ Non-attic combustion air pull

FURNACE INSTALLATION
- _______ Adequate clearance from combustibles
- _______ Adequate clearance for service
- _______ Proper air temperature rise (See furnace rating plate)
- _______ External static pressure _______ inches w.c.
- _______ Correct filter(s)
- _______ Correct cooling coil or accessories (if equipped)
- _______ Adequate supply and return air ducting _______ Return Air Duct Size _______ Supply Air Duct Size
- _______ Air ducts sealed to prevent leakage
Important: All manufacturer products meet current Federal OSHA Guidelines for safety. California Proposition 65 warnings are required for certain products, which are not covered by the OSHA standards.

California's Proposition 65 requires warnings for products sold in California that contain, or produce, any of over 600 listed chemicals known to the State of California to cause cancer or birth defects such as fiberglass insulation, lead in brass, and combustion products from natural gas.

All “new equipment” shipped for sale in California will have labels stating that the product contains and/or produces Proposition 65 chemicals. Although we have not changed our processes, having the same label on all our products facilitates manufacturing and shipping. We cannot always know “when, or if” products will be sold in the California market.

You may receive inquiries from customers about chemicals found in, or produced by, some of our heating and air-conditioning equipment, or found in natural gas used with some of our products. Listed below are those chemicals and substances commonly associated with similar equipment in our industry and other manufacturers.

- Glass Wool (Fiberglass) Insulation
- Carbon Monoxide (CO)
- Formaldehyde
- Benzene

More details are available at the Websites for OSHA (Occupational Safety and Health Administration), at www.osha.gov and the State of California’s OEHHA (Office of Environmental Health Hazard Assessment), at www.oehha.org. Consumer education is important since the chemicals and substances on the list are found in our daily lives. Most consumers are aware that products present safety and health risks, when improperly used, handled and maintained.

CONTENTS

- Installation Check List ... 2
- Safety Information .. 4
- General Information ... 6
- Location Requirements and Considerations 7
- Combustion and Ventilation Air ... 13
- Vent Pipe Installation .. 17
- Gas Supply and Piping .. 20
- Electrical Wiring .. 24
- Thermostat .. 25
- Accessories .. 25
- Furnace Twinning .. 26
- High Altitude Installations ... 29
- Start-Up Procedure ... 32
- Air Flow .. 35
- Blower Performance Data ... 36
- Safety Features ... 37
- Maintenance ... 38
- Troubleshooting .. 41
- Wiring Diagram ... 43

IMPORTANT: TO INSURE PROPER INSTALLATION AND OPERATION OF THIS PRODUCT, COMPLETELY READ ALL INSTRUCTIONS PRIOR TO ATTEMPTING TO ASSEMBLE, INSTALL, OPERATE, MAINTAIN OR REPAIR THIS PRODUCT. UPON UNPACKING OF THE FURNACE, INSPECT ALL PARTS FOR DAMAGE PRIOR TO INSTALLATION AND START-UP.
SAFETY INFORMATION

WARNING

USE ONLY WITH TYPE OF GAS APPROVED FOR THIS FURNACE. REFER TO THE FURNACE RATING PLATE.

WARNING

INSTALL THIS FURNACE ONLY IN A LOCATION AND POSITION AS SPECIFIED IN THE LOCATION REQUIREMENTS AND CONSIDERATIONS SECTION OF THESE INSTRUCTIONS.

WARNING

PROVIDE ADEQUATE COMBUSTION AND VENTILATION AIR TO THE FURNACE SPACE AS SPECIFIED IN THE VENTING SECTION OF THESE INSTRUCTIONS.

WARNING

COMBUSTION PRODUCTS MUST BE DISCHARGED OUTDOORS. CONNECT THIS FURNACE TO AN APPROVED VENT SYSTEM ONLY, AS SPECIFIED IN VENT PIPE INSTALLATION SECTION OF THESE INSTRUCTIONS.

THE MANUFACTURER IS NOT RESPONSIBLE FOR EQUIPMENT THAT IS MISMATCHED OR IMPROPERLY INSTALLED. NEVER TEST FOR GAS LEAKS WITH AN OPEN FLAME. USE A COMMERCIAL SOAP SOLUTION MADE SPECIFICALLY FOR THE DETECTION OF LEAKS TO CHECK ALL CONNECTIONS, AS SPECIFIED IN GAS SUPPLY AND PIPING SECTION OF THESE INSTRUCTIONS.

ALWAYS INSTALL FURNACE TO

WARNING

OPERATE WITHIN THE FURNACE’S INTENDED TEMPERATURE-RISE RANGE WITH A DUCT SYSTEM WHICH HAS AN EXTERNAL STATIC PRESSURE WITHIN THE ALLOWABLE RANGE, AS SPECIFIED IN DUCTING SECTION OF THESE INSTRUCTIONS. SEE ALSO FURNACE RATING PLATE. WHEN A FURNACE IS INSTALLED

WARNING

SO THAT SUPPLY DUCTS CARRY AIR CIRCULATED BY THE FURNACE TO AREAS OUTSIDE THE SPACE CONTAINING THE FURNACE, THE RETURN AIR SHALL ALSO BE HANDLED BY DUCT(S) SEALED TO THE FURNACE CASING AND TERMINATING OUTSIDE THE SPACE CONTAINING THE FURNACE.

WHEN THIS FURNACE IS INSTALLED IN A RESIDENTIAL GARAGE, IT MUST BE INSTALLED SO THAT THE BURNERS AND IGNITION SOURCE ARE LOCATED NO LESS THAN 18 INCHES ABOVE THE FLOOR. THIS IS TO REDUCE THE RISK OF IGNITING FLAMMABLE VAPORS WHICH MAY BE PRESENT IN A GARAGE. ALSO, THE FURNACE MUST BE LOCATED OR PROTECTED TO AVOID PHYSICAL DAMAGE BY VEHICLES. FAILURE TO FOLLOW THESE WARNINGS CAN CAUSE A FIRE OR EXPLOSION, RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

WARNING

USE OF THIS FURNACE IS ALLOWED DURING CONSTRUCTION IF THE FOLLOWING TEMPORARY INSTALLATION REQUIREMENTS ARE MET. INSTALLATION MUST COMPLY WITH ALL INSTALLATION INSTRUCTIONS INCLUDING:

- PROPER VENT INSTALLATION;
- FURNACE OPERATING UNDER THERMOSTATIC CONTROL;
- RETURN AIR DUCT SEALED TO THE FURNACE;
- AIR FILTERS IN PLACE;
- SET FURNACE INPUT RATE AND TEMPERATURE RISE PER RATING PLATE MARKING;
- MEANS FOR PROVIDING OUTDOOR AIR REQUIRED FOR COMBUSTION;
- RETURN AIR TEMPERATURE MAINTAINED BETWEEN 55°F (13°C) AND 80°F (27°C); AND
- CLEAN FURNACE, DUCT WORK AND COMPONENTS UPON SUBSTANTIAL COMPLETION OF THE CONSTRUCTION PROCESS, AND VERIFY FURNACE OPERATING CONDITIONS INCLUDING IGNITION, INPUT RATE, TEMPERATURE RISE AND VENTING, ACCORDING TO THE INSTRUCTIONS.
DUCT LEAKS CAN CREATE AN UNBALANCED SYSTEM AND DRAW POLLUTANTS SUCH AS DIRT, DUST, FUMES AND ODORS INTO THE HOME CAUSING PROPERTY DAMAGE. FUMES AND ODORS FROM TOXIC, VOLATILE OR FLAMMABLE CHEMICALS, AS WELL AS AUTOMOBILE EXHAUST AND CARBON MONOXIDE (CO), CAN BE DRAWN INTO THE LIVING SPACE THROUGH LEAKING DUCTS AND UNBALANCED DUCT SYSTEMS CAUSING PERSONAL INJURY OR DEATH (SEE FIGURE 1).

• IF AIR-MOVING EQUIPMENT OR DUCTWORK IS LOCATED IN GARAGES OR OFF-GARAGE STORAGE AREAS - ALL JOINTS, SEAMS, AND OPENINGS IN THE EQUIPMENT AND DUCT MUST BE SEALED TO LIMIT THE MIGRATION OF TOXIC FUMES AND ODORS INCLUDING CARBON MONOXIDE FROM MIGRATING INTO THE LIVING SPACE.

• IF AIR-MOVING EQUIPMENT OR DUCTWORK IS LOCATED IN SPACES CONTAINING FUEL BURNING APPLIANCES SUCH AS WATER HEATERS OR BOILERS - ALL JOINTS, SEAMS, AND OPENINGS IN THE EQUIPMENT AND DUCT MUST ALSO BE SEALED TO PREVENT DEPRESSURIZATION OF THE SPACE AND POSSIBLE MIGRATION OF COMBUSTION BYPRODUCTS INCLUDING CARBON MONOXIDE INTO THE LIVING SPACE.

IMPROPER INSTALLATION, OR INSTALLATION NOT MADE IN ACCORDANCE WITH THE CSA INTERNATIONAL (CSA) CERTIFICATION OR THESE INSTRUCTIONS, CAN RESULT IN UNSATISFACTORY OPERATION AND/OR DANGEROUS CONDITIONS AND ARE NOT COVERED BY THE UNIT WARRANTY.

IN COMPLIANCE WITH RECOGNIZED CODES, IT IS RECOMMENDED THAT AN AUXILIARY DRAIN PAN BE INSTALLED UNDER ALL EVAPORATOR COILS OR UNITS CONTAINING EVAPORATOR COILS OR GAS FURNACES USED WITH EVAPORATOR COILS THAT ARE LOCATED IN ANY AREA OF A STRUCTURE WHERE DAMAGE TO THE BUILDING OR BUILDING CONTENTS MAY OCCUR AS A RESULT OF AN OVERFLOW OF THE COIL DRAIN PAN OR A STOPPAGE IN THE PRIMARY CONDENSATE DRAIN PIPING.
GENERAL INFORMATION

The RGPQ/RGLQ series furnaces are design certified by CSA for use with natural and propane gases as follows:

As a Category I furnace, it may be vented vertically with type B-1 vent pipe and also may be common vented as described in these instructions.

This furnace should be installed in accordance with the American National Standard Z223.1 - latest edition booklet entitled “National Fuel Gas Code” (NFPA 54) (in Canada, CSA B149.1 and 2 Installation Codes for gas burning appliances), and the requirements or codes of the local utility or other authority having jurisdiction including local plumbing or waste water codes.

The National Appliance Energy Conservation Act (NAECA) of 1987 states that any gas furnace manufactured after January 1, 1992, must have a minimum Annual Fuel Utilization Efficiency (AFUE) of 78%. The higher the AFUE percentage the more usable heat energy the consumer gets for every dollar of fuel purchased. This is similar to the EPA’s minimum gas mileage requirement for automobiles. It gives the consumer a relatively easy way to make direct efficiency comparisons between different furnace brands and styles.

A high AFUE value, which translates into a low operating cost, is not the only concern that consumers have. They also want a furnace with a reasonable installed cost. They want a furnace that provides them with comfort – their main concern. And they expect a furnace with exceptional reliability and longevity.

Gas furnace manufacturers are always striving to provide consumers with the best furnace value. The Low Profile Furnace addresses all those consumer needs. It gives exceptional efficiency with a low installation cost. It delivers the comfort the customer wants along with the reliability they expect.

The key to all these customer benefits is the furnace’s heat exchanger. The materials used to construct the furnace in general and the heat exchanger in particular make it a rugged, long lasting unit. The unique heat exchanger design provides the customer with a furnace only 34 inches high. This gives the consumer a unit easily installed in almost every location that accepts all customary accessories.

With the introduction of higher efficiency furnaces, special attention must be paid to the venting system. Only listed venting systems may be used as stated in the installation instructions and the National Fuel Gas Code, ANSI Z223.1 (NFPA 54), or the Canadian CAN/CGA B149.1 and B149.2 Installation Codes for Gas Burning Appliances. Since furnace technology and venting requirements are changing, awareness of local, state, and federal codes and industry changes is imperative.

NOTE: Always perform a proper heat loss calculation before specifying the furnace size. This ensures that the furnace is sized to adequately, economically, heat the building and provide the correct airflow for your application.

IMPORTANT: PROPER APPLICATION, INSTALLATION AND MAINTENANCE OF THIS FURNACE IS A MUST IF CONSUMERS ARE TO RECEIVE THE FULL BENEFITS FOR WHICH THEY HAVE PAID.

These publications are available from:
National Fire Protection Association, Inc.
BatteryMarch Park
Quincy, MA 02269
CSA-INTERNATIONAL
178 Rexdale Blvd.
Etobicoke (Toronto), Ontario
Canada M9W, 1R3

FIGURE 1
MIGRATION OF DANGEROUS SUBSTANCES, FUMES, AND ODORS INTO LIVING SPACES

WARNING

DUCT LEAKS CAN CREATE AN UNBALANCED SYSTEM AND DRAW POLLUTANTS SUCH AS DIRT, DUST, FUMES AND ODORS INTO THE HOME CAUSING PROPERTY DAMAGE. FUMES AND ODORS FROM TOXIC, VOLATILE OR FLAMMABLE CHEMICALS, AS WELL AS AUTOMOBILE EXHAUST AND CARBON MONOXIDE (CO), CAN BE DRAWN INTO THE LIVING SPACE THROUGH LEAKING DUCTS AND UNBALANCED DUCT SYSTEMS CAUSING PERSONAL INJURY OR DEATH (SEE FIGURE 1).

• IF AIR-MOVING EQUIPMENT OR DUCTWORK IS LOCATED IN GARAGES OR OFF-GARAGE STORAGE AREAS - ALL JOINTS, SEAMS, AND OPENINGS IN THE EQUIPMENT AND DUCT MUST BE SEALED TO LIMIT THE MIGRATION OF TOXIC FUMES AND ODORS INCLUDING CARBON MONOXIDE FROM MIGRATING INTO THE LIVING SPACE.

IMPORTANT INFORMATION ABOUT EFFICIENCY AND INDOOR AIR QUALITY

Central cooling and heating equipment is only as efficient as the duct system that carries the cooled or heated air. To maintain efficiency, comfort and good indoor air quality, it is important to have the proper balance between the air being supplied to each room and the air returning to the cooling and heating equipment.

Proper balance and sealing of the duct system improves the efficiency of the heating and air conditioning system and improves the indoor air quality of the home by reducing the amount of airborne pollutants that enter homes from spaces where the ductwork and / or equipment is located. The manufacturer and the U.S. Environmental Protection Agency’s Energy Star Program recommend that central duct systems be checked by a qualified contractor for proper balance and sealing.
LOCATION REQUIREMENTS AND CONSIDERATIONS

GENERAL INFORMATION

1. NOTE: This furnace is shipped with heat exchanger support brackets installed under the back of the heat exchanger. These may be removed before installation, but it is not required.

2. IMPORTANT: This furnace is not approved or recommended for installation on its back, with access doors facing upwards.

3. This furnace is suitable for installation in buildings constructed on-site. This heating unit should be centralized with respect to the heat distribution system as much as practicable.

4. NOTE: These furnaces are approved for installation in attics, as well as alcoves, utility rooms, closets and crawlspaces.

5. IMPORTANT: Support this unit when installed. For attic or crawl space installation, horizontal furnaces may be installed on wood flooring or by using support brackets. See Figure 2.

6. IMPORTANT: If installing in a utility room, be sure the door is wide enough to:
 a. allow the largest part of the furnace to pass; or
 b. allow any other appliance (such as a water heater) to pass.

LOCATION

WARNING

THIS FURNACE IS NOT APPROVED FOR INSTALLATION IN A MOBILE HOME. INSTALLATION IN A MOBILE HOME COULD CAUSE FIRE, PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

1. IMPORTANT: This furnace is shipped with heat exchanger support brackets installed under the back of the heat exchanger. These may be removed before installation, but it is not required.

2. NOTE: These furnaces are approved for installation in attics, as well as alcoves, utility rooms, closets and crawlspaces.

3. IMPORTANT: Support this unit when installed. For attic or crawl space installation, horizontal furnaces may be installed on wood flooring or by using support brackets. See Figure 2.

4. IMPORTANT: If installing in a utility room, be sure the door is wide enough to:
 a. allow the largest part of the furnace to pass; or
 b. allow any other appliance (such as a water heater) to pass.

FIGURE 2

HORIZONTAL FURNACE INSTALLED W/SUPPORT BRACKETS

NOTE: Do not block furnace access with support rods. Maintain clearances recommended in Figure 3. Allow enough space for proper service maintenance or replacement of the heat exchanger and blower assembly.
CLEARANCE – ACCESSIBILITY

The design of forced air furnaces with input ratings as listed in the tables on the following pages are certified by CSA for the clearances to combustible materials shown in inches.

See name/rating plate and clearance label for specific model number and clearance information.

Service clearance of at least 24 inches is recommended in front of all furnaces.

ACCESSIBILITY CLEARANCES, WHERE GREATER, MUST TAKE PRECEDENCE OVER FIRE PROTECTION CLEARANCES.

⚠️ WARNING

UPFLOW AND HORIZONTAL FURNACES MUST NOT BE INSTALLED DIRECTLY ON CARPETING, TILE OR OTHER COMBUSTIBLE MATERIAL OTHER THAN WOOD FLOORING. INSTALLATION ON A COMBUSTIBLE MATERIAL CAN RESULT IN FIRE CAUSING PROPERTY DAMAGE, SEVERE PERSONAL INJURY OR DEATH.

A gas-fired furnace for installation in a residential garage must be installed so that the burner(s) and the ignition source are located not less than 18" above the floor and the furnace is located or protected to avoid physical damage by vehicles.

⚠️ WARNING

DOWNFLOW UNIT DESIGN IS CERTIFIED FOR INSTALLATION ON NON-COMBUSTIBLE FLOOR. A SPECIAL COMBUSTIBLE FLOOR SUB-BASE IS REQUIRED WHEN INSTALLING ON A COMBUSTIBLE FLOOR. FAILURE TO INSTALL THE SUB-BASE MAY RESULT IN FIRE, PROPERTY DAMAGE, PERSONAL INJURY OR DEATH. THIS SPECIAL BASE IS OFFERED AS AN ACCESSORY FROM THE FACTORY. SEE THE CLEARANCE LABEL LOCATED INSIDE THE FURNACE FOR THE APPROPRIATE MODEL NUMBER.

THE SPECIAL BASE IS NOT REQUIRED WHEN THE FURNACE IS INSTALLED ON TOP OF AN AIR CONDITIONING PLENUM.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>14"</td>
</tr>
<tr>
<td>17 1/2"</td>
</tr>
<tr>
<td>21"</td>
</tr>
<tr>
<td>24 1/2"</td>
</tr>
</tbody>
</table>

SITE SELECTION

1. Select a site in the building near the center of the proposed, or existing, duct system.

2. Give consideration to the vent system piping when selecting the furnace location. Be sure the venting system can travel from the furnace to the termination with minimal length and elbows.

3. Locate the furnace near the existing gas piping. Or, if running a new gas line, locate the furnace to minimize the length and elbows in the gas piping.

4. Locate the furnace to maintain proper clearance to combustibles as shown in Figures 3 and 4.

⚠️ CAUTION

WHEN COILS ARE USED WITH AIR HANDLERS OR FURNACES AND INSTALLED ABOVE A FINISHED CEILING OR LIVING AREA, IT IS RECOMMENDED THAT AN AUXILIARY SHEET METAL CONDENSATE DRAIN PAN BE FABRICATED AND INSTALLED UNDER ENTIRE UNIT. FAILURE TO DO SO CAN RESULT IN PROPERTY DAMAGE. RUN CONDENSATE TO A LOCATION WHERE IT IS NOTICEABLE.

⚠️ WARNING

COMBUSTIBLE MATERIAL MUST NOT BE PLACED ON OR AGAINST THE FURNACE JACKET OR WITHIN THE SPECIFIED CLEARANCES OF THE VENT PIPE. THE AREA AROUND THE FURNACE MUST BE KEPT CLEAR AND FREE OF ALL COMBUSTIBLE MATERIALS INCLUDING GASOLINE AND OTHER FLAMMABLE VAPORS AND LIQUIDS. PLACEMENT OF COMBUSTIBLE MATERIALS ON, AGAINST OR AROUND THE FURNACE JACKET CAN CAUSE AN EXPLOSION OR FIRE RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH. THE FURNACE OWNER SHOULD BE CAUTIONED THAT THE FURNACE AREA MUST NOT BE USED AS A BROOM CLOSET OR FOR ANY OTHER STORAGE PURPOSES.
CLEARANCE TO COMBUSTIBLE MATERIAL (INCHES)
UPFLOW/HORIZONTAL MODELS

REDUCED CLEARANCE (IN.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>14</td>
<td>127/32</td>
<td>107/32</td>
<td>111/2</td>
<td>111/2</td>
<td>111/2</td>
<td>0</td>
<td>43/4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>85 lbs.</td>
</tr>
<tr>
<td>07</td>
<td>177/8</td>
<td>167/8</td>
<td>127/32</td>
<td>111/2</td>
<td>111/2</td>
<td>111/2</td>
<td>0</td>
<td>33/4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>105 lbs.</td>
</tr>
<tr>
<td>11</td>
<td>177/8</td>
<td>167/8</td>
<td>127/32</td>
<td>111/2</td>
<td>111/2</td>
<td>111/2</td>
<td>0</td>
<td>33/4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>115 lbs.</td>
</tr>
<tr>
<td>10(B)</td>
<td>21</td>
<td>197/8</td>
<td>147/8</td>
<td>111/2</td>
<td>111/2</td>
<td>111/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>120 lbs.</td>
</tr>
<tr>
<td>12</td>
<td>243/16</td>
<td>237/8</td>
<td>157/8</td>
<td>111/2</td>
<td>111/2</td>
<td>111/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>140 lbs.</td>
</tr>
<tr>
<td>15</td>
<td>243/16</td>
<td>237/8</td>
<td>157/8</td>
<td>111/2</td>
<td>111/2</td>
<td>111/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>150 lbs.</td>
</tr>
</tbody>
</table>

1. May require 3" to 4" or 3" or 5" adapter.
2. May be 0" with type B vent.
3. May be 1" with type B vent.

IMPORTANT: This furnace is not approved or recommended for installation on its back, with access doors facing upwards.
CLEARANCE TO COMBUSTIBLE MATERIAL (INCHES)
DOWNFLOW MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Left Side</th>
<th>Right Side</th>
<th>Back</th>
<th>Top</th>
<th>Front</th>
<th>Vent</th>
<th>Ship. Wtgs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>17½</td>
<td>16½</td>
<td>12½</td>
<td>16½</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>105 lbs</td>
</tr>
<tr>
<td>10(A)</td>
<td>17½</td>
<td>16½</td>
<td>12½</td>
<td>16½</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>115 lbs</td>
</tr>
<tr>
<td>10(B)</td>
<td>21</td>
<td>19½</td>
<td>13½</td>
<td>20½</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>120 lbs</td>
</tr>
<tr>
<td>12</td>
<td>24½</td>
<td>23½</td>
<td>15½</td>
<td>23½</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>140 lbs</td>
</tr>
<tr>
<td>15</td>
<td>24½</td>
<td>23½</td>
<td>15½</td>
<td>23½</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
<td>150 lbs</td>
</tr>
</tbody>
</table>

1. May require 3” to 4” or 3” or 5” adapter.
2. May be 0” with type B vent.
3. May be 1” with type B vent.

NOTE: IN DOWNFLOW CONFIGURATION, OPTIONAL AIR CUTOUT IS NOT PERMITTED.
DUCTING

Proper air flow is required for the correct operation of this furnace. Too little air flow can cause erratic operation and can damage the heat exchanger. The duct system must carry the correct amount of air for heating and cooling. Position the unit to minimize long runs or runs with many turns and elbows.

Size the ducts according to acceptable industry standards and methods. The total static pressure drop (including evaporator coil, if used) of the entire system should not exceed 0.5" w.c. Be sure to have adequate space for unit filter. **NOTE:** Airflow external static pressure measurements do not include filter or coil.

IMPORTANT: Some high efficiency filters have a greater than normal resistance to air flow. This can adversely affect furnace operation. **BE SURE TO CHECK AIR FLOW** if using any filter other than the factory-provided filter.

NOTE: DO NOT take return air from bathrooms, kitchens, furnace rooms, garages, utility or laundry rooms, or cold areas.

IMPORTANT: When using outside air, design and adjust the system to maintain a return air temperature **above 55°F** during the heating season.

WARNING

WARNING

FAILURE TO PREVENT PRODUCTS OF COMBUSTION FROM BEING CIRCULATED INTO THE LIVING SPACE CAN CREATE POTENTIALLY HAZARDOUS CONDITIONS, INCLUDING CARBON MONOXIDE POISONING THAT COULD RESULT IN PERSONAL INJURY OR DEATH.

DO NOT, UNDER ANY CIRCUMSTANCES, CONNECT RETURN OR SUPPLY DUCTWORK TO OR FROM ANY OTHER HEAT PRODUCING DEVICE SUCH AS A FIREPLACE INSERT, STOVE, ETC. DOING SO MAY RESULT IN FIRE, CARBON MONOXIDE POISONING, EXPLOSION, PERSONAL INJURY OR PROPERTY DAMAGE.

WARNING

BLOWER AND BURNERS MUST NEVER BE OPERATED WITHOUT THE BLOWER DOOR IN PLACE. THIS IS TO PREVENT DRAWING GAS FUMES (WHICH COULD CONTAIN HAZARDOUS CARBON MONOXIDE) INTO THE HOME THAT COULD RESULT IN PERSONAL INJURY OR DEATH.
UPFLOW UNITS
1. Set furnace in place and connect the return duct or return air cabinet to unit. Make the connection air-tight to prevent entraining combustion gases from any adjacent fuel-burning appliances. Unit return air may be connected on the sides or bottom of the return air compartment.
 a. Openings in the side must be cut out the full width of the knockouts on the unit. If using side return air, THE BOTTOM base plate must be installed.

 NOTE: Where the maximum airflow is 1800 CFM or more, both sides or the bottom must be used for return air.
 b. If using bottom return air, place furnace over return air plenum and seal furnace bottom to return air plenum.

WARNING
A SOLID METAL BASE PLATE, (SEE TABLE 1) MUST BE IN PLACE WHEN THE FURNACE IS INSTALLED WITH SIDE AIR RETURN DUCTS. FAILURE TO INSTALL A BASE PLATE COULD CAUSE PRODUCTS OF COMBUSTION TO BE CIRCULATED INTO THE LIVING SPACE AND CREATE POTENTIALLY HAZARDOUS CONDITIONS, INCLUDING CARBON MONOXIDE POISONING OR DEATH.

2. If summer air conditioning is desired, position the indoor coil on the supply air side of the furnace. Insure that no air can bypass this coil.
3. Connect the supply air plenum to the furnace plenum opening.

DOWNFLOW UNITS

WARNING
THE DOWNFLOW FURNACE DESIGN IS CERTIFIED FOR INSTALLATION ON A NON-COMBUSTIBLE FLOOR. IF INSTALLED ON A COMBUSTIBLE FLOOR, USE THE SPECIAL BASE SPECIFIED ON THE FURNACE CLEARANCE LABEL. FAILURE TO INSTALL THE SPECIAL BASE MAY RESULT IN FIRE, PROPERTY DAMAGE, PERSONAL INJURY OR DEATH. THIS SPECIAL BASE IS SHIPPED FROM THE FACTORY AS AN ACCESSORY.

1. Position the unit over the supply air plenum and connect.
 a. If installing on a combustible floor and not using an evaporator coil box, install the special combustible floor base. See Figure 5.
 b. If summer air conditioning is desired, position the indoor coil on the bottom of the unit. Insure that no air can bypass this coil.

2. Connect the return air ducting to the return air opening at the top of the unit. Make the connection air tight to prevent entraining combustion gases from an adjacent fuel-burning appliance.

NOTE: Do not block furnace access with support rods. Maintain clearances recommended in Figure 3. Allow enough space for proper service maintenance or replacement of the heat exchanger and blower assembly.

HORIZONTAL UNITS
1. Unit can be mounted left or right side airflow configuration.
2. Position the unit on adequate supports or by using support brackets (see Figure 2) and connect supply plenum.
3. If summer air conditioning is desired, position the indoor coil on the supply air side of the unit. Insure that no air can bypass this coil.
4. Secure the four angle brackets shipped with the unit to the return air opening. See Figure 6. Connect the return air ducting to the return air opening at the top of the unit. Make the connection air tight to prevent entraining combustion gases from an adjacent fuel-burning appliance.

NOTE: Do not block furnace access with support rods. Maintain clearances recommended in Figure 3. Allow enough space for proper service maintenance or replacement of the heat exchanger and blower assembly.

FIGURE 5
COMBUSTIBLE FLOOR BASE (RXGC -B14, -B17, -B21 OR -B24)
Combustion and Ventilation Air

Important: This is not a direct vent furnace. Review venting instructions before installing.

Warning

This furnace and any other fuel-burning appliance must be provided with enough fresh air for proper combustion and ventilation of the flue gases. Most homes will require that outside air be supplied into the furnace area. Failure to do so can cause death from carbon monoxide poisoning.

Adequate facilities for providing air for combustion and ventilation must be provided in accordance with section 5.3, Air for Combustion and Ventilation, of the National Fuel Gas Code, ANSI, Z223.1 latest edition or CSA B149.1 and .2 or, applicable provisions for the local building codes, and not obstructed so as to prevent the flow of air to the furnace.

Combustion Air Requirements

Important: Air for combustion and ventilation must not come from a corrosive atmosphere. Any failure due to corrosive elements in the atmosphere is excluded from warranty coverage.

The following types of installation may require outdoor air for combustion, due to chemical exposures:

- Commercial buildings
- Buildings with indoor pools
- Furnaces installed in laundry rooms
- Furnaces in hobby or craft rooms
- Furnaces installed near chemical storage areas.

Exposure to the following substances in the combustion air supply may also require outdoor air for combustion:

- Permanent wave solutions
- Chlorinated waxes and cleaners
- Chlorine-based swimming pool chemicals
- Water softening chemicals
- De-icing salts or chemicals
- Carbon tetrachloride
- Halogen type refrigerants
- Cleaning solvents (such as perchloroethylene)
- Printing inks, paint removers, varnishes, etc.
- Hydrochloric acid
- Cements and glues
- Antistatic fabric softeners for clothes dryers
- Masonry acid washing materials
Combustion air must be free of acid forming chemicals; such as sulphur, fluorine and chlorine. These elements are found in aerosol sprays, detergents, bleaches, cleaning solvents, air fresheners, paint and varnish removers, refrigerants and many other commercial and household products. Vapors from these products when burned in a gas flame form acid compounds. The acid compounds increase the dew point temperature of the flue products and are highly corrosive after they condense.

WARNING

ALL FURNACE INSTALLATIONS MUST COMPLY WITH THE NATIONAL FUEL GAS CODE AND LOCAL CODES TO PROVIDE ADEQUATE COMBUSTION AND VENTILATION AIR FOR THE FURNACE. FAILURE TO DO SO CAN CREATE HAZARDOUS CONDITIONS RESULTING IN PROPERTY DAMAGE, BODILY INJURY OR DEATH FROM SMOKE, FIRE OR CARBON MONOXIDE.

Combustion air requirements are determined by whether the furnace is in an open (unconfined) area or in a confined space such as a closet or small room. See Figures 7 and 8.

EXAMPLE 1.

FURNACE LOCATED IN AN UNCONFINED SPACE

Using indoor air for combustion.

An unconfined space must have at least 50 cubic feet for each 1,000 BTUH of the total input for all appliances in the space. Here are a few examples of the room sizes required for different inputs. The sizes are based on 8 foot ceilings.

<table>
<thead>
<tr>
<th>BTUH Input</th>
<th>Minimum Sq. Feet</th>
<th>Typical Room Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>312</td>
<td>14"x24" or 18"x18"</td>
</tr>
<tr>
<td>75,000</td>
<td>469</td>
<td>15"x31" or 20"x24"</td>
</tr>
<tr>
<td>100,000</td>
<td>625</td>
<td>20"x31" or 25"x25"</td>
</tr>
<tr>
<td>125,000</td>
<td>833</td>
<td>23"x34" or 26"x30"</td>
</tr>
<tr>
<td>150,000</td>
<td>938</td>
<td>25"x38" or 30"x31"</td>
</tr>
</tbody>
</table>

If the open space containing the furnace is in a building with tight construction (contemporary construction), outside air may still be required for the furnace to operate and vent properly. Outside air openings should be sized the same as for a confined space.

EXAMPLE 2.

FURNACE LOCATED IN A CONFINED SPACE

A confined space (any space smaller than shown above as “unconfined”) must have openings into the space which are located in accordance with the requirements set forth in the following subsections A and B. Size the openings by how they are connected to the heated area or to the outside, and by the input of all appliances in the space.

If confined space is within a building with tight construction, combustion air must be taken from outdoors or area freely communicating with the outdoors.

A. USING INDOOR AIR FOR COMBUSTION, ALL OF THE MODELS (RGPQ, RGLQ)

IMPORTANT: Air should not be taken from a heated space with a fireplace, exhaust fan or other device that may produce a negative pressure.

If combustion air is taken from the heated area, the openings must each have at least 100 square inches of free area. Each opening must have at least one square inch of free area for each 1,000 Btuh of total input in the space. Here are some examples of typical openings required.

<table>
<thead>
<tr>
<th>Btuh Input</th>
<th>Free Area Each Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>100 Square Inches</td>
</tr>
<tr>
<td>150,000</td>
<td>150 Square Inches</td>
</tr>
</tbody>
</table>

AIR INTAKE PIPE CONNECTION (RGPQ ONLY)

A single or double-elbow may be installed to top inlet air opening, BUT IS NOT REQUIRED. This will help to prevent accidental blockage of the intake opening. Reference Figure 9 for proper elbow diameter.

NOTE: Inlet is specifically designed to prevent material from being pulled into furnace. If elbows are not used, the intake opening must be kept clean and free of debris.

It is also acceptable to run the condensate drain (or refrigerant) line access over the air intake hole as long as a 1" minimum clearance is maintained.
B. USING OUTDOOR AIR FOR COMBUSTION, ALL OF THE MODELS (RGPQ, RGLQ)

IMPORTANT: Never take combustion air from an attic space that is equipped with power ventilation.

The confined space must communicate with the outdoors according to Methods 1 and 2. The minimum air opening dimension shall not be less than 3 inches. When using ducts, they shall be of the same cross-sectional area as the free area of the openings to which they connect.

B: Method 1

Provide two permanent openings, one located within 12 inches of the top and one located within 12 inches of the bottom of the enclosure. Each opening shall communicate directly, or by ducts, with the outdoors or spaces (crawl or attic) that freely communicate with the outdoors.

a. Where directly communicating with the outdoors or where communicating to the outdoors through **VERTICAL DUCTS**, each opening shall have a minimum free area of **1 square inch for each 4000 BTUH** of total appliance input rating in the enclosure. Here are typical duct sizes:

VERTICAL OUTDOOR AIR OPENING DIMENSIONS

<table>
<thead>
<tr>
<th>BTUH Input</th>
<th>Free Area Each Opening</th>
<th>Round Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>12.50 sq. inches</td>
<td>4"</td>
</tr>
<tr>
<td>75,000</td>
<td>18.75 sq. inches</td>
<td>5"</td>
</tr>
<tr>
<td>100,000</td>
<td>25.00 sq. inches</td>
<td>6"</td>
</tr>
<tr>
<td>125,000</td>
<td>31.25 sq. inches</td>
<td>7"</td>
</tr>
<tr>
<td>150,000</td>
<td>37.50 sq. inches</td>
<td>7"</td>
</tr>
</tbody>
</table>

b. Where communicating with outdoors through **HORIZONTAL DUCTS**, each opening shall have a minimum free area of **1 square inch for each 2000 BTUH** of total input rating for all equipment in the enclosure. Here are typical duct sizes:

HORIZONTAL OUTDOOR AIR OPENING DIMENSIONS

<table>
<thead>
<tr>
<th>BTUH Input</th>
<th>Free Area Each Opening</th>
<th>Round Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>25.00 sq. inches</td>
<td>6"</td>
</tr>
<tr>
<td>75,000</td>
<td>37.50 sq. inches</td>
<td>7"</td>
</tr>
<tr>
<td>100,000</td>
<td>50.00 sq. inches</td>
<td>8"</td>
</tr>
<tr>
<td>125,000</td>
<td>62.50 sq. inches</td>
<td>9"</td>
</tr>
<tr>
<td>150,000</td>
<td>75.00 sq. inches</td>
<td>10"</td>
</tr>
</tbody>
</table>

B: Method 2

One permanent opening, located within 12 inches of the top of the enclosure, shall be permitted where the equipment has clearances of at least 1 inch from the sides and back and 6 inches from the front of the appliance. The opening shall directly communicate with the outdoors or communicate through a vertical or horizontal duct to the outdoors or spaces (crawl or attic) that freely communicate with the outdoors and have a minimum free area of:

a. One square inch for each 3000 BTUH of the total input rating of all equipment located in the enclosure, **AND**

b. Not less than the sum of the areas of all vent connectors in the confined space.

IMPORTANT: If the furnace is in a location with an exhaust fan, there must be sufficient ventilation to prevent the exhaust fan from creating a negative pressure in the room.

Combustion air openings must **NOT BE RESTRICTED** in any manner.

CONSULT LOCAL CODES FOR SPECIAL REQUIREMENTS.
B: Method 3, RGPQ only

For the optimum in quiet operation, attic air may be brought directly to the furnace.

IMPORTANT: In applications using Method 3 for combustion air, the attic must be ventilated by gable or soffit vents. See Figure 8.

CAUTION

COMBUSTION AIR INTAKES CANNOT BE TERMINATED OUTSIDE. DOING SO CAN CAUSE IMPROPER OPERATION OF THE FURNACE.

If attic combustion air is used, the inlet air opening at the furnace must be protected from accidental blockage. Install a 90° elbow pointing horizontally at the top of inlet air pipe. See Figure 11 (maximum of two, 22.5°, 45° or 90° elbows, allowed).

NOTE: Maximum length of pipe that may be used for combustion air is 10 feet with two elbows. Lengths of more than 10 feet can result in nuisance pressure switch trips.

FIGURE 10
OUTSIDE AIR USING A HORIZONTAL INLET & OUTLET

FIGURE 11
B: METHOD 3 ILLUSTRATION
COMBUSTION AIR FITTING – OPTIONAL ATTIC COMBUSTION AIR PULL, RGPQ ONLY

<table>
<thead>
<tr>
<th>FURNACE BTU/H</th>
<th>PVC OF PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>2'</td>
</tr>
<tr>
<td>75,000</td>
<td>3'</td>
</tr>
<tr>
<td>100,000</td>
<td>3'</td>
</tr>
<tr>
<td>125,000</td>
<td>3'</td>
</tr>
<tr>
<td>150,000</td>
<td>3'</td>
</tr>
</tbody>
</table>

ATTACH A 90° ELBOW TO TOP INLET AIR OPENING TO PREVENT ACCIDENTAL BLOCKAGE OF INTAKE OPENING.

CAUTION

USE OF SHEET METAL AIR INTAKE PIPE INSTEAD OF PVC MAY RESULT IN NOISE ISSUES.
VENTING

GENERAL INFORMATION

The furnace must be vented in accordance with these instructions, National Fuel Gas Code, ANSI Z223.1 and/or the Natural Gas Installation Code, CSA-B149.1 & .2 and requirements or codes of the local utility or other authority having jurisdiction.

WARNING

DEVICES ATTACHED TO THE FLUE OR VENT FOR THE PURPOSE OF REDUCING HEAT LOSS UP THE CHIMNEY HAVE NOT BEEN TESTED AND HAVE NOT BEEN INCLUDED IN THE DESIGN CERTIFICATION OF THIS FURNACE. WE, THE MANUFACTURER, CANNOT AND WILL NOT BE RESPONSIBLE FOR INJURY OR DAMAGE CAUSED BY THE USE OF SUCH UNTESTED AND/OR UNCERTIFIED DEVICES, ACCESSORIES OR COMPONENTS.

DRAFT INDUCER

WARNING

VENT PIPE ATTACHING HOLES MUST BE PREDRILLED IN THE DRAFT INDUCER COLLAR TO PREVENT DAMAGING THE INDUCER. DRILL 1/8" DIAMETER HOLES THROUGH THE VENT PIPE AND COLLAR AND USE #8 SCREWS TO ATTACH. SEE FIGURE 12. FAILURE TO FOLLOW THIS WARNING CAN CAUSE RECIRCULATION OF FLUE PRODUCTS CAUSING CARBON MONOXIDE POISONING RESULTING IN PERSONAL INJURY OR DEATH.

FURNACE CATEGORY INFORMATION

This furnace is shipped as a Category I type induced draft furnace. A Category I furnace operates with a nonpositive vent pressure and has a vent gas temperature at least 140°F above the dew point of the vent gases. A Category I type may be a draft hood equipped furnace or have a fan assisted combustion system (induced draft). The inducer is used to pull flue products through the combustion chamber and as they leave the furnace, most of the energy has been dissipated. The buoyant effect of the flue gases provides venting to the outdoors.

During the off cycle, the inducer is off and there is very little flow through the vent, cooling the vent. During the on cycle there is no dilution airflow, as with a draft hood type furnace. Although the vent heats up rapidly without dilution air, the flue products contain more water vapor, which results in a higher dew point temperature. It is most important that you follow the guidelines in these instructions to prevent the possible formation of condensation in the venting system.

As a Category I furnace it may be vented vertically with type B-1 vent pipe and also may be common vented, as described in these instructions.

IMPORTANT APPLICATION NOTES

When the furnace is used as a replacement, the existing vent system should be inspected to assure that there are no obstructions, blockage, or any signs of corrosion and is properly sized for use with this furnace.

NOTE: When the vent table permits more than one diameter of pipe for a connector or vent, the smallest permitted diameter must be used.

Vent pipe may be type “B-1,” either rigid or suitable flexible construction that carries a u.l. listing. Common venting is allowed with vertical B-1 vent systems, and lined masonry chimneys. Follow the National Fuel Gas Code, ANSI Z223.1 and/or the Natural Gas Installation Code, CSA-B149.1 & .2 for proper installation practices.

NOTE: Follow combustion air instructions as outlined in this manual.

Single wall vent connectors to “B-1 vent or masonry chimneys” may be used under the guidelines of the National Fuel Gas Code, ANSI Z223.1 and/or the Natural Gas Installation Code, CSA-B149.1 & .2.

The entire length of the vent connector shall be readily accessible for inspection, cleaning and replacement.
“B-1” VERTICAL VENTING

Type “B-1” vents must be installed in accordance with the terms of their listings and the vent manufacturer’s instructions.

“B-1” vents must be supported and spaced in accordance with their listings and the manufacturer’s instructions. All vents must be supported to maintain their minimum clearances from combustible material.

IMPORTANT:

<table>
<thead>
<tr>
<th>VERTICAL VENTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorized Furnace Vent Size Required</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>50K</td>
</tr>
<tr>
<td>75K</td>
</tr>
<tr>
<td>100K</td>
</tr>
<tr>
<td>125K</td>
</tr>
<tr>
<td>150K</td>
</tr>
</tbody>
</table>

NOTE: All furnaces have a 3" vent connection as shipped from the factory. A 3” to 4” or 3” to 5” vent transition is required on all but the 50,000 BTUH models when vertically vented or common vented with metal vent pipes. THE VENT TRANSITION CONNECTION MUST BE MADE AT THE FURNACE VENT EXIT. It must originate with an adapter if required, at the furnace flue collar and terminate either in a listed cap or roof assembly. When common venting, the vent connector size may differ from the above diameters depending on application. See ANSI Z21.47-1993/CSA-2.3-M93 or latest edition tables.

VERTICAL VENT SYSTEMS:

1. A gas vent shall terminate above the roof surface with a listed cap or listed roof assembly. Gas vents 12 inches in size or smaller with listed caps shall be permitted to be terminated in accordance with Figure 13, provided they are at least 8 feet from a vertical wall or similar obstruction. All other gas vents shall terminate not less than 2 feet above the highest point where they pass through the roof and at least 2 feet higher than any portion of a building within 10 feet.

2. A type B-1 gas vent shall terminate at least 5 feet in vertical height above the highest connected equipment draft hood or flue collar.

3. Must rise 1⁄4” per foot away from the furnace on horizontal runs and be supported with straps or hangers so it has no sags or dips. Supports at 4 foot intervals and at all elbows are recommended.

4. The vent connector must be mechanically fastened to the outlet collar of the furnace with at least (2) sheet metal screws except vent connectors that are B-1 material. These shall be assembled in accordance with the manufacturer’s instructions. See Figure 12.

5. Any angle greater than 45 degrees from the vertical is considered horizontal. The total horizontal distance of a vent plus the horizontal vent connector serving draft-hood equipped appliances shall not be greater than 75 percent of the vertical height of the vent.

WARNING

DO NOT CONNECT THIS FURNACE TO A CHIMNEY USED TO VENT A SOLID FUEL APPLIANCE (WOOD OR COAL). VENTING WITH A SOLID FUEL APPLIANCE CAN LEAD TO IMPROPER FUNCTIONING OF THE UNIT, AND DUE TO SOOTING, THE POSSIBILITY OF FIRE RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

SPECIAL VENT SYSTEMS (SVS)

IMPORTANT: It is THE FURNACE MANUFACTURER’s position now that new installations of any HTPV pipe used in a category III vent application, including Selkirk’s Selvent™ II HTPV product, should cease immediately.

FIGURE 13

TYPICAL VENTING WITH “B-1” VENT

[Diagram showing venting setup with labeled parts like listed cap, min. discharge opening, listed gas vent, and roof pitch x/12.]

4. The vent connector must be mechanically fastened to the outlet collar of the furnace with at least (2) sheet metal screws except vent connectors that are B-1 material. These shall be assembled in accordance with the manufacturer’s instructions. See Figure 12.

5. Any angle greater than 45 degrees from the vertical is considered horizontal. The total horizontal distance of a vent plus the horizontal vent connector serving draft-hood equipped appliances shall not be greater than 75 percent of the vertical height of the vent.

NOTE: Refer to the National Fuel Gas Code, ANSI Z223.1 and/or the Natural Gas Installation Code, CSA-B149.1 & .2.

Single appliance venting of a fan assisted furnace into a tile-lined masonry chimney is prohibited. The chimney must be lined with either Type B vent or with a listed, single wall, metal lining system. Reference National Fuel Gas Code, ANSI Z223.1 and/or the Natural Gas Installation Code, CSA-B149.1 & .2. See Figure 14 for typical B-1 vent chase.
EXISTING VENT SYSTEMS

Important Retrofit Venting Instructions

If this furnace is a replacement installation, **ALWAYS INSPECT** the existing vent system to be sure there are no obstructions, blockages, or signs of corrosion.

When the existing furnace is removed from a venting system serving other appliances, the venting is likely to be too large to properly vent the remaining attached appliances.

The following steps shall be followed with each appliance that remains connected to the common venting system, while the other appliances that remain connected to the common venting systems are not in operation.

NOTE: When the vent table permits more than one diameter of pipe for a connector or vent, the smallest permitted diameter must be used.

1. Seal any unused openings in the common venting system.
2. Visually inspect the venting system for proper size and horizontal pitch and determine that there is no blockage, restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.
3. Insofar as is practical, close all building doors, windows and all doors between the space where the appliances remaining connected to the common venting system are located. Turn on clothes dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.
4. Test for spillage at the draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle, or smoke from a cigarette, cigar, or pipe.
5. After it has been determined that each appliance that remains connected to the common venting system properly vents (when tested as outlined above) return doors, windows, exhaust fans, fireplace dampers and any other gas-burning appliance to their previous conditions of use.
6. If improper venting is observed during any of the above tests, the common venting system must be resized. Refer to National Fuel Gas Code, ANSI Z223.1 and/or the Natural Gas Installation Code, CSA-B149.1 & .2.

POWER VENT SYSTEMS

When vertical venting is not possible, the only acceptable method for horizontal venting is with the use of Tjernlund model GPAK-1TR or Field Controls models SWG-4R power venter. Type B vent pipe and fittings must be used. Common venting is not permitted.

All application and installation instructions supplied with the power venter must be followed.

Please address all questions regarding power venter installation, agency listings and furnace model compatibility to:

- Tjernlund Products, Inc.
 (800) 255-4208 or (612) 426-2993
- Field Controls L.L.C.
 (800) 742-8368 or (919) 522-0214

FIGURE 14

DEDICATED VENTING THROUGH CHIMNEY WITH “B-1” VENT

[Diagram of dedicated venting through chimney with “B-1” vent]
GAS SUPPLY AND PIPING

GAS SUPPLY

WARNING

THIS FURNACE IS EQUIPPED AT THE FACTORY FOR USE ON NATURAL GAS ONLY. CONVERSION TO LP GAS REQUIRES A SPECIAL KIT AVAILABLE FROM THE DISTRIBUTOR. FAILURE TO USE THE PROPER CONVERSION KIT CAN CAUSE FIRE, CARBON MONOXIDE POISONING, EXPLOSION, PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

See the conversion kit index supplied with the furnace. This index identifies the proper LP Gas Conversion Kit required for each particular furnace.

IMPORTANT: Any additions, changes or conversions required for the furnace to satisfactorily meet the application should be made by a qualified installer, service agency or the gas supplier, using factory-specified or approved parts. In the commonwealth of Massachusetts, installation must be performed by a licensed plumber or gas fitter for appropriate fuel.

IMPORTANT: Connect this furnace only to gas supplied by a commercial utility.

IMPORTANT: A U.L. recognized fuel gas and CO detector(s) are recommended in all applications, and their installation should be in accordance with the detector manufacturer's recommendations and/or local laws, rules, regulations or customs.

GAS PIPING (SEE FIGURE 15)

Install the gas piping according to all local codes, state codes and regulations of the utility company, whichever holds jurisdiction.

If possible, run a separate gas supply line directly from the meter to the furnace. Consult the local gas company for the location of the manual main shut-off valve. The gas line and manual gas valve must be adequate in size to prevent undue pressure drop and never smaller than the pipe size to the combination gas valve on the furnace. Refer to Tables 2 and 3, on the following pages, for the recommended pipe sizes for natural and LP gas.

IMPORTANT: It is permissible to run flexible gas connector inside the unit to a piece of black pipe. If local codes allow the use of a flexible gas appliance connector, always use a new listed connector. Do not use a connector which has previously serviced another gas appliance. Massachusetts law limits flexible gas connectors to a maximum of 36".

Install a ground joint union outside the cabinet to easily remove the control valve assembly. Install a manual shut-off valve in the gas line outside the furnace casing. The valve should be readily accessible to turn the gas supply on or off. Install a drip leg in the gas supply line as close to the furnace as possible. Always use a pipe compound resistant to the action of liquefied petroleum gases on all threaded connections.

IMPORTANT: When making gas pipe connections, use a back-up wrench to prevent any twisting of the control assembly and gas valve. Do not overtighten the connection.

Any strains on the gas valve can change the position of the gas orifices in the burners. This can cause erratic furnace operation.

IMPORTANT: ENSURE that the furnace gas control valve not be subjected to high gas line supply pressures.

DISCONNECT the furnace and its individual shut-off valve from the gas supply piping during any pressure testing that exceeds 1/2 PSIG (14" W.C. or 3.48 kPa).

GAS PRESSURE

IMPORTANT: The maximum gas supply pressure to the furnace should be 10.5” w.c. for natural gas and 13” w.c. for LP gas.

Natural gas supply pressure should operate between 5” to 10.5” w.c. LP gas supply pressure should be 11” to 13” w.c. This pressure must be maintained with all other gas-fired appliances in operation.

NOTE: Do not exceed a gas pressure of 13” w.c.

LP CONVERSION

NOTE: For installation, see specific LP kit installation instructions included with this furnace.

NOTE: Order the correct LP conversion kit from the local distributor. Furnace conversion to LP gas must be performed by a qualified technician.

More information found in the high altitude orifice section.

CAUTION

ELEVATIONS ABOVE 2000 FT REQUIRE THAT THE FURNACE INPUT RATING BE ADJUSTED AND THAT THE SIZE OF THE BURNER ORIFICES BE RE-CALCULATED BASED ON ELEVATION AND GAS HEATING VALUE. THE BURNER ORIFICES MAY (OR MAY NOT) NEED TO BE CHANGED. SEE THE SECTION TITLED “HIGH ALTITUDE INSTALLATIONS” OF THIS BOOK FOR INSTRUCTIONS.

WARNING

NEVER PURGE A GAS LINE INTO THE COMBUSTION CHAMBER. NEVER USE MATCHES, FLAME OR ANY IGNITION SOURCE FOR CHECKING LEAKAGE. FAILURE TO FOLLOW THIS WARNING CAN CAUSE AN EXPLOSION OR FIRE RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

To check for gas leakage, use an approved chloride-free soap and water solution, an electronic combustible gas detector, or other approved method.

NOx MODELS

When converting furnaces equipped with NOx inserts to LP gas, remove the NOx insert assemblies. Steps for removal are listed below:

1. Turn off all electrical power and the gas supply to the furnace.
2. Remove the burner door from the furnace.
3. Remove the igniter assembly – handle with care.
4. Remove the two screws attaching the NOx insert retainer brackets to the center panel. Pull the retainer rod.
5. Put the two screws back into the holes in the center panel.
6. Re-install the igniter and burner assemblies.
7. Replace burner door.
8. Turn on electrical power and gas supply to the unit.

NOTE: Some NOx models may have one less NOx insert.
SETTING GAS PRESSURE

The maximum gas supply pressure to the furnace should be 10.5" w.c. natural gas, or 13" w.c. LP gas. The minimum supply pressure to the gas valve should be 5" w.c. natural gas or 11" w.c. LP gas. A properly calibrated manometer is required for accurate gas pressure measurements.

CAUTION

ELEVATIONS ABOVE 2000 FT REQUIRE THAT THE FURNACE INPUT RATING BE ADJUSTED AND THAT THE SIZE OF THE BURNER ORIFICES BE RE-CALCULATED BASED ON ELEVATION AND GAS HEATING VALUE. THE BURNER ORIFICES MAY (OR MAY NOT) NEED TO BE CHANGED. SEE THE SECTION TITLED "HIGH ALTITUDE INSTALLATIONS" OF THIS BOOK FOR INSTRUCTIONS.

Supply Gas Pressure Measurement.
A line pressure tap is on the inlet side of the gas valve.

1. With gas shut off to the furnace at the manual gas valve outside the unit, remove the input pressure tap plug.
2. Connect a U-Tube manometer to the pressure tap. See Figure 16.
3. Turn on the gas supply and operate the furnace and all other gas-fired units on the same gas line as the furnace.
4. Adjust the line gas pressure to supply:
 A. 5" - 10.5" w.c. for natural gas.
 B. 11" - 13" w.c. for LP gas.
5. Shut off the gas at the manual gas valve and remove the U-Tube manometer.
6. Replace the pressure tap plug before turning on the gas.

NATURAL GAS:
If the supply gas line pressure is above the operating range, install an in-line gas regulator to the furnace. If supply gas line pressure is below the operating range, either remove any restrictions in the gas supply piping or enlarge the gas pipe. See Table 2.

LP GAS:
If the supply gas line pressure is above the operating range, have the LP supplier reduce the line pressure at the regulator. If supply gas line pressure is below operating range, have the LP supplier adjust the line pressure at the regulator. See Table 3.

NOTE: Depending on the amount of LP vapor and the outdoor ambient temperature, the LP storage tank may require supplemental heat to maintain proper pressure levels. Ensure LP storage tank does not drop below 15% capacity during heating season.

TABLE 2
NATURAL GAS PIPE CAPACITY TABLE (CU. FT./HR.)

<table>
<thead>
<tr>
<th>Nominal Pipe Size, Inches</th>
<th>Length of Pipe, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1/2</td>
<td>1.32</td>
</tr>
<tr>
<td>1</td>
<td>1.52</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.05</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length of Pipe, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

The gas input of the furnace is marked on the furnace rating plate. The heating value of the gas (BTU/FT3) may be determined by consulting the local natural gas utility or the LP gas supplier.

TABLE 3
LP GAS PIPE CAPACITY TABLE (CU. FT./HR.)

<table>
<thead>
<tr>
<th>Nominal Pipe Size, Inches</th>
<th>Length of Pipe, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1/2</td>
<td>275</td>
</tr>
<tr>
<td>3/4</td>
<td>567</td>
</tr>
<tr>
<td>1</td>
<td>1,071</td>
</tr>
<tr>
<td>1-1/4</td>
<td>2,205</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3,307</td>
</tr>
<tr>
<td>2</td>
<td>6,221</td>
</tr>
</tbody>
</table>

Example (LP): Input BTU requirement of unit, 150,000
Equivalent length of pipe, 60 ft. = 3/4" IPS required.
ADJUSTING OR CHECKING FURNACE INPUT

ELEVATIONS ABOVE 2000 FT REQUIRE THAT THE FURNACE INPUT RATE BE ADJUSTED AND THAT THE SIZE OF THE BURNER ORIFICES BE RE-CALCULATED BASED ON ELEVATION AND GAS HEATING VALUE. THE BURNER ORIFICES MAY (OR MAY NOT) NEED TO BE CHANGED. SEE THE SECTION TITLED “HIGH ALTITUDE INSTALLATIONS” OF THIS BOOK FOR INSTRUCTIONS.

NATURAL GAS:
The maximum gas supply pressure to the furnace should be 10.5” W.C. for natural gas. The minimum gas supply pressure for purposes of input adjustment to the furnace should be 5” W.C.

A properly calibrated manometer or gauge is required for accurate gas pressure readings.

The manifold pressure should be set at 3.5” W.C. for natural gas. Only small variations in the gas flow should be made by means of the pressure regulator adjustment.

To adjust the pressure regulator:
1. Remove the regulator cap.
2. Turn the adjustment screw clockwise to increase pressure or counterclockwise to decrease pressure.
3. Replace the regulator cap securely.

LP GAS:
Furnaces for use on LP gas, the LP gas supply pressure must be set between 11.0” and 13.0” W.C. by means of the tank or branch supply regulators. The furnace manifold pressure should be set at 10” W.C. at the gas control valve. For elevations up to 7,000 feet, rating plate input ratings apply. For high altitudes (elevations 7,000 and over) and for any necessary major changes in the gas flow rate the orifice spuds must be changed.

TO CHANGE ORIFICE SPUDS:
1. Shut off the manual main gas valve and remove the gas manifold.
2. Replace the orifice spuds.
3. Reassemble in reverse order.
4. Turn the gas supply back on and check for leaks.
5. Check for proper operation and manifold pressure.

Check of input is important to prevent over firing of the furnace beyond its design-rated input. NEVER SET INPUT ABOVE THAT SHOWN ON THE RATING PLATE.

TO CHECK FURNACE INPUT:
1. Make certain that all other gas appliances are shut off, with the exception of pilot burners.
2. Start the furnace
3. Time the meter to measure the time required to burn one cubic foot of gas.
4. Use Table 4 to determine input rate.

A properly calibrated manometer or gauge is required for accurate gas pressure readings.

1. When adjusting the furnace input, the high fire input should be checked. The high fire manifold pressure should be 3.5” W.C. Follow these steps to be sure the furnace is high fire mode:
 a. With a single stage thermostat, the furnace runs for 12 minutes on low fire before shifting to high fire. To be certain that it is on high fire, jump terminals “W” and “W2” on the control board in the blower compartment.
 b. With a two stage thermostat, set the thermostat to its highest setting to keep the furnace operating in the high fire mode.

2. To adjust high fire manifold pressure, remove the adjustment cover screw on the outlet end of the gas valve and turn the adjustment screw clockwise to increase the pressure and counterclockwise to reduce the pressure. Replace the cover screw securely.

3. The low fire manifold pressure should be 1.7” W.C. As mentioned above, the furnace remains in the low fire mode for 12 minutes upon a heat call with a single stage thermostat. With a two stage thermostat, disconnect the thermostat lead to the “W2” terminal on the control board and the furnace will remain in the low fire mode. To adjust the pressure, remove the regulator cover, on top of the valve, and adjust as noted under Step 2, above. After the adjustment replace the screw cover securely.

NOTE: Use a 3/32” allen wrench for making the pressure adjustment.

Table 4

<table>
<thead>
<tr>
<th>Input BTU/HR</th>
<th>Meter Size (Cu. Ft.)</th>
<th>Heating Value of Gas (BTU/Cu.Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>50,000</td>
<td>ONE 10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>TEN 12</td>
<td>13</td>
</tr>
<tr>
<td>75,000</td>
<td>ONE 12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>TEN 14</td>
<td>15</td>
</tr>
<tr>
<td>100,000</td>
<td>ONE 14</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>TEN 16</td>
<td>17</td>
</tr>
<tr>
<td>125,000</td>
<td>ONE 16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>TEN 18</td>
<td>19</td>
</tr>
<tr>
<td>150,000</td>
<td>ONE 18</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TEN 20</td>
<td>21</td>
</tr>
</tbody>
</table>

Input BTU/HR = Heating Value of Gas (BTU/Cu.Ft) x 3600 x correction factor

Time in Seconds (for 1 cu.ft.) of Gas

CAUTION
ELECTRICAL WIRING

WARNING

TURN OFF ELECTRIC POWER AT THE FUSE BOX OR SERVICE PANEL BEFORE MAKING ANY ELECTRICAL CONNECTIONS.

ALSO, THE GROUND CONNECTION MUST BE COMPLETED BEFORE MAKING LINE VOLTAGE CONNECTIONS. FAILURE TO DO SO CAN RESULT IN ELECTRICAL SHOCK, SEVERE PERSONAL INJURY OR DEATH.

IMPORTANT: The furnace must be installed so that the electrical components are protected from water due to improper flue installation or evaporator condensate drain run-off, etc.

NOTE: Electric power to the furnace must be supplied by a commercial utility. Proper operating voltage is 110-125 volts.

ELECTRICAL CONNECTIONS

WARNING

THE CABINET MUST BE PERMANENTLY GROUNDED. A GROUND SCREW IS PROVIDED IN THE JUNCTION BOX FOR THIS PURPOSE. FAILURE TO DO SO CAN RESULT IN FIRE, ELECTRICAL SHOCK, PERSONAL INJURY OR DEATH.

The electrical supply requirements are listed on the furnace rating plate.

Use a separate fused branch electrical circuit containing a properly sized fuse or circuit breaker. Run this circuit directly from the main switch box to an electrical disconnect which must be readily accessible and located within sight of the furnace. Connect from the disconnect to the junction box on the left side of the furnace, inside the control compartment. See appropriate wiring diagram.

NOTE: The electrical junction box inside the furnace control compartment may be relocated to the right side if necessary. A knockout is provided.

NOTE: L1 (hot) and neutral polarity must be observed when making field connections to the furnace. The ignition control on electric ignition models will not sense flame if L1 and neutral are reversed.

When “Line” and “Neutral” are reversed, a diagnostic code of 6 blinks followed by a pause and 6 blinks (repeats) will be displayed on the “STATUS” LED.

TABLE 5

FIELD WIRE SIZE FOR 24 VOLT CONTROL CIRCUITS

<table>
<thead>
<tr>
<th>THERMOSTAT LOADING, AMPS</th>
<th>SOLID COPPER WIRE - AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0 16 14 12</td>
</tr>
<tr>
<td></td>
<td>2.5 16 14 12</td>
</tr>
<tr>
<td></td>
<td>2.0 18 16 14</td>
</tr>
<tr>
<td>LENGTH OF RUN - FEET @ 50 100 150</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Do not use 24 volt control wiring smaller than No. 18.

FIGURE 17

ISOLATION RELAY

Installation of the electric supply line should be in accordance with the National Electric Code ANSI/NFPA No. 70, latest edition, or Canadian Electrical Code Part 1 - CSA Standard C22.1 and local building codes.

These can be obtained from:

National Electric Code:
National Fire Protection Association
Battery March Park
Quincy, MA 02269

CSA Standard:
Canadian Standards Association
178 Rexdale Blvd.
Etobicoke (Toronto), Ontario
Canada M9W, 1R3

FIGURE 18

LINE VOLTAGE CONNECTIONS

UTECH 1095-201 CONTROL BOARD

TABLE 5

FIELD WIRE SIZE FOR 24 VOLT CONTROL CIRCUITS

<table>
<thead>
<tr>
<th>THERMOSTAT LOADING, AMPS</th>
<th>SOLID COPPER WIRE - AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0 16 14 12</td>
</tr>
<tr>
<td></td>
<td>2.5 16 14 12</td>
</tr>
<tr>
<td></td>
<td>2.0 18 16 14</td>
</tr>
<tr>
<td>LENGTH OF RUN - FEET @ 50 100 150</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Do not use 24 volt control wiring smaller than No. 18.
THERMOSTAT

The room thermostat must be compatible with the integrated furnace control on the furnace. Generally, all thermostats that are not of the “current robbing” type are compatible with the integrated furnace control used. See Figure 19 for thermostat wiring options.

ISOLATION RELAY

IMPORTANT: NOT ALL ELECTRONIC NIGHT SETBACK THERMOSTATS ARE COMPATIBLE WITH THE FURNACE CONTROL SYSTEM. SOME MAY REQUIRE AN ISOLATION RELAY

If an isolation relay is needed, install it as close to the control board as possible. Use a single-pole, single-throw relay with a 24 volt operating coil. The relay contacts should be designed for 24 volt loads.

Connect one end of the operating coil to the thermostat “W” terminal. Connect the other end of the coil to the “C” terminal on the control board.

Connect a jumper from the coil terminal connected to the thermostat to one of the normally open relay contacts.

> Connect the other side of the normally open relay contacts to the control board “W” terminal if using a two stage thermostat. Connect that one side of the normally open relay contacts to the control board “W2” terminal if using a single stage thermostat.

When the thermostat calls for heat, it powers the 24 volt operating coil. This closes the relay contacts and conducts power from terminal 3 and 4 to terminal “W” on the control board and starts the furnace ignition sequence. See Figure 17.

> **NOTE:** Use of an isolation relay with the two stage furnace is not normally needed.

Install the room thermostat in accordance with the instruction sheet in the box with the thermostat. Run the thermostat lead wires inside the control compartment. Connect the thermostat as shown on the wiring diagram. Never install the thermostat on an outside wall or where it will be influenced by drafts, concealed hot or cold water pipes, lighting fixtures, radiation from fireplace, rays of sun, lamps, television, radios or air streams from registers. Refer to the instructions packed with the thermostat for best anticipator adjustment or selection or see below.

HEAT ANTICIPATOR SETTINGS

For adjusting the thermostat heat anticipator setting: (a) add the current draw of the various components in the system or (b) using jumper wire, measure the current flow between the R and W thermostat circuits. Set the thermostat heat anticipator according to the current flow measured.

FIELD INSTALLED OPTION ACCESSORIES

ELECTRONIC AIR CLEANER

Electronic air cleaner line voltage power can be supplied from the screw terminal “EAC” and a line voltage neutral screw terminal on the control board. Power is on any time the blower is activated. See Figure 18.

HUMIDIFIER

Humidifier line voltage power can be supplied from screw terminal “HUM” to a line voltage neutral screw terminal on the control board. See Figure 18. This will power the humidifier whenever the inducer is operating in the heating mode.

> **NOTE:** Maximum current – 1.0 amps for each option.

FOSSIL FUEL KIT

Refer to specification sheet for approved fossil fuel kit number.
FIGURE 20
UTECHNO ELECTRONIC CONTROLS NO. 1095-201 OR 1095-204 CONTROL BOARD
TWINNING CONNECTION SINGLE STAGE THERMOSTAT
(OPTION “A” – 100% HEAT ALWAYS)
FIGURE 21
UTELECTRONIC CONTROLS NO. 1095-20 CONTROL BOARD
TWINNING CONNECTION SINGLE STAGE THERMOSTAT
(OPTION "B" - TIMED STAGING OPTION)

FOR SIMULATED STAGING, ARRANGE JUMPER P7 FOR 5 OR 12 MINUTES ON LOW FIRE.

P7 JUMPER ON BOTH CONTROLS MUST BE SET IN THE SAME POSITION.

NOTE:
P7 JUMPER SHOULD NOT BE SET TO "NONE" OR FURNACE WILL NEVER REACH 100% FIRE RATE.
FIGURE 22
UTE ELECTRONIC CONTROLS NO. 1095-202 CONTROL BOARD
TWINNING CONNECTION TWO STAGE THERMOSTAT

TWINNING CONNECTION TWO STAGE OPERATION

COOLING CONTACTOR
RXGW-B01 CHIMNEY ADAPTER

IMPORTANT: CHIMNEY ADAPTER IS CERTIFIED FOR USE ON UPFLOW RGPO ONLY.

This appliance is CSA certified for use with RXGW-B01 Chimney Adapter. Refer to Kit Installation Instructions 92-101682-01.

FURNACE TWINNING INSTALLATIONS

NOTE: Limit of two furnaces per thermostat.

IMPORTANT: No more than two furnaces can share the same supply and return. Furnaces must have same heating and blower capacity. Twinning furnaces must operate off the same phase of power.

Twinning operation of two furnaces, installed side-by-side, connected by a common duct system with main power supplied by the same source, and controlled by a common thermostat can be done with the UTEC 1095-201 integrated control boards.

The Status LED will flash 5 times if the twinning is not set up properly.

Single Stage Thermostat

(See Figure 18)

a. Control board “ONE” is on furnace connected to the thermostat.

b. The 24 VAC supply to both control boards must be in phase with each other.

c. **OPTION A:** Connect W2, W, C and TWIN terminals to counterpart on each control.

d. **OPTION B:** Connect W, C and TWIN terminals to counterpart on each control.

e. Both control boards must have jumper at P6 position in the “TWIN” position (see Figure 24).

f. Adjust the heat anticipator current to 0.15 amps.

(See Figure 24.)

TABLE 6

<table>
<thead>
<tr>
<th>Natural Gas Orifice Drill Size (4% per 1000 ft. De-Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORTANT: 80+ Models only. Do not use this chart for any 90+ Models.</td>
</tr>
<tr>
<td>Burner Input (per burner) 25,000 BTU @ Sea Level</td>
</tr>
<tr>
<td>Annual Avg. Heat Value (btu per ft²)</td>
</tr>
<tr>
<td>850</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>975</td>
</tr>
<tr>
<td>1075</td>
</tr>
<tr>
<td>1170</td>
</tr>
</tbody>
</table>

TABLE 7

<table>
<thead>
<tr>
<th>LP GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORTANT: 80+ MODELS ONLY! DO NOT USE THIS CHART WITH ANY 90+ MODELS.</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>0 to 2000 ft.</td>
</tr>
<tr>
<td>2000'-3000'</td>
</tr>
<tr>
<td>3000'-4000'</td>
</tr>
<tr>
<td>4000'-5000'</td>
</tr>
<tr>
<td>5000'-6000'</td>
</tr>
<tr>
<td>6000'-7000'</td>
</tr>
<tr>
<td>7000'-8000'</td>
</tr>
<tr>
<td>8000'-9000'</td>
</tr>
<tr>
<td>9000'-10000'</td>
</tr>
</tbody>
</table>

FIGURE 23

MANIFOLD PRESSURE-CHANGE LABEL

THE MANIFOLD PRESSURE OF THIS APPLIANCE HAS BEEN FIELD ADJUSTED TO OBTAIN THE CORRECT INPUT RATING FOR INSTALLATION AT ALTITUDES BETWEEN 2,000 FEET AND 4,500 FEET ELEVATION.

LA PRESSION DU DISTRIBUTEUR D’ALIMENTATION DE CET APPAREIL A ÉTÉ AJUSTÉ SUR LES LIEUX AFIN D’OBTENIR LA BONNE PUISSANCE D’ENTRÉE POUR UNE INSTALLATION ENTRE 2000 ET 4500 PIEDS D’ALTITUDE.

92-24399-01-01
The following are examples of orifice sizing using the National Fuel Gas Code Appendix F:

For a simplified estimation of orifice size based on gas heating value and elevation, Tables 6 and 9 may be used. However, calculations are the best method.

Example: 900 BTU/ft³ Regional Natural Gas Heating Value

\[\frac{I}{H} = \frac{Q}{25000} = 27.78 \text{ ft}^3 \]

\[I = \text{Sea Level input (per burner): 25000} \]
\[H = \text{Sea Level Heating Value: 900} \]
\[Q = 27.78 \text{ ft}^3 \text{ Natural Gas per hour.} \]

From Table F.1 of National Fuel Gas Code Handbook, 2002 (3.5" w.c. column).

Orifice required at Sea Level: #40

From Table F.4 of National Fuel Gas Code Handbook, 2002

Orifice required at 5000 ft. elevation (4% de-rate per thousand ft.): #42

Orifice required at 8000 ft. elevation (4% de-rate per thousand ft.): #44

Example: 1050 BTU/ft³ Regional Natural Gas Heating Value

\[\frac{I}{H} = \frac{Q}{25000} = 23.81 \text{ ft}^3 \]

\[I = \text{Sea Level input (per burner): 25000} \]
\[H = \text{Sea Level Heating Value: 1050} \]
\[Q = 23.81 \text{ ft}^3 \text{ Natural Gas per hour.} \]

From Table F.1 of National Fuel Gas Code Handbook, 2002 (3.5" w.c. column).

Orifice required at Sea Level: #43

From Table F.4 of National Fuel Gas Code Handbook, 2002

Orifice required at 5000 ft. elevation (4% de-rate per thousand ft.): #45

Orifice required at 8000 ft elevation (4% de-rate per thousand ft.): #47

LP GAS (TABLE 7)

NOTE: Keep any parts removed during LP conversion procedure stored with the product literature for future use.

LP Gas is a manufactured gas that has consistent heating value across most regions.

The NFGC guidelines are used with the following exception:

The recommended LP Gas high altitude orifice selections differ slightly in that the NFGC LP orifice chart, as they are not accurate for Rheem products. The National Fuel Gas Code LP orifices are based on an 11" of water column pressure at the orifice, which differs from products that use 10" of water column at the orifice. This difference requires a deviation from the NFGC orifice size recommendations. The Sea Level input should still be reduced by 4% per thousand ft. and the orifice size must be selected based on the reduced input in Table 7.

ORIFICE ORDERING INFORMATION

Orifice sizes are selected by adding the 2-digit drill size required in the orifice part number. Drill sizes available are 39 through 64; metric sizes available 1.10mm (-90) and 1.15mm (-91):

Example:

#60 drill size orifice required

Part #62-22175-60

#1.15mm drill size orifice required

Part #62-22175-91

ALTERNATE METHOD FOR CANADIAN HIGH-ALTITUDE DERATE

In Canada, unless an orifice change is specifically mandated by local codes, an alternate method of altitude deration through a reduction in manifold pressure is acceptable as described in Table 8. This information is based on a heating value of 1000 BTU per cubic feet of natural gas, and 2500 BTU per cubic feet of LP gas.

IMPORTANT: Actual input rates must be measured onsite with manifold pressure adjustment to ensure that an actual 10% reduction in input rate is achieved.

Once this field adjustment has been made, the label shown in Figure 23 must be affixed in a conspicuous location on the front of the furnace cabinet.

NOTE: This label is supplied in the information packet shipped with each furnace.

TABLE 8

ALTERNATE METHOD FOR CANADIAN HIGH-ALTITUDE DERATE

IMPORTANT: 80+ MODELS ONLY! DO NOT USE THIS CHART WITH ANY 90+ MODELS.

<table>
<thead>
<tr>
<th>ALTIMETER</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>ORIFICE SIZE</th>
<th>MANIFOLD PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0'-2000'</td>
<td>50,000</td>
<td>40,000</td>
<td>#42</td>
<td>3.5" W.C.</td>
</tr>
<tr>
<td>50,000</td>
<td></td>
<td>75,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75,000</td>
<td></td>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
<td>125,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125,000</td>
<td></td>
<td>150,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001'-4500'</td>
<td>45,000</td>
<td>36,000</td>
<td>#42</td>
<td>2.9" W.C.</td>
</tr>
<tr>
<td>45,000</td>
<td></td>
<td>67,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67,500</td>
<td></td>
<td>90,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td></td>
<td>112,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112,500</td>
<td></td>
<td>135,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001'-4500'</td>
<td>45,000</td>
<td>36,000</td>
<td>#54</td>
<td>8.1" W.C.</td>
</tr>
<tr>
<td>45,000</td>
<td></td>
<td>67,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67,500</td>
<td></td>
<td>90,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td></td>
<td>112,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112,500</td>
<td></td>
<td>135,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NATURAL GAS

<table>
<thead>
<tr>
<th>ALTIMETER</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>ORIFICE SIZE</th>
<th>MANIFOLD PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0'-2000'</td>
<td>50,000</td>
<td>40,000</td>
<td>#42</td>
<td>3.5" W.C.</td>
</tr>
<tr>
<td>50,000</td>
<td></td>
<td>75,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75,000</td>
<td></td>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
<td>125,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125,000</td>
<td></td>
<td>150,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001'-4500'</td>
<td>45,000</td>
<td>36,000</td>
<td>#42</td>
<td>2.9" W.C.</td>
</tr>
<tr>
<td>45,000</td>
<td></td>
<td>67,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67,500</td>
<td></td>
<td>90,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td></td>
<td>112,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112,500</td>
<td></td>
<td>135,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LP GAS

<table>
<thead>
<tr>
<th>ALTIMETER</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>ORIFICE SIZE</th>
<th>MANIFOLD PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0'-2000'</td>
<td>50,000</td>
<td>40,000</td>
<td>#54</td>
<td>10" W.C.</td>
</tr>
<tr>
<td>50,000</td>
<td></td>
<td>75,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75,000</td>
<td></td>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
<td>125,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125,000</td>
<td></td>
<td>150,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001'-4500'</td>
<td>45,000</td>
<td>36,000</td>
<td>#54</td>
<td>8.1" W.C.</td>
</tr>
<tr>
<td>45,000</td>
<td></td>
<td>67,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67,500</td>
<td></td>
<td>90,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90,000</td>
<td></td>
<td>112,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112,500</td>
<td></td>
<td>135,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30
TABLE 9
SUPPLEMENTAL ORIFICE SIZE CHART

80 Plus Models only with 25,000 Btu’s per Burner. Do not use this chart for any 90+ models.

NATURAL GAS QUICK REFERENCE CHART FOR ORIFICE SELECTION, AT 3.5" W.C. AND APPROXIMATE FINAL FIRING RATES

<table>
<thead>
<tr>
<th>Sea Level Orifice Size</th>
<th>Sea Level Cubic Foot at 3.5" W.C.</th>
<th>80 Plus Heat Value at 25,000</th>
<th>ELEVATION CHART (NFG recommended orifice based on 4% derate for each 1000 foot of elevation, based on the intersection of the orifice required at Sea Level and the elevation required below)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-999</td>
</tr>
<tr>
<td>37</td>
<td>30.63</td>
<td>816</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>29.25</td>
<td>855</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>28.2</td>
<td>887</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>27.03</td>
<td>925</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>25.98</td>
<td>962</td>
<td>41</td>
</tr>
<tr>
<td>42</td>
<td>24.95</td>
<td>1002</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>22.39</td>
<td>1117</td>
<td>43</td>
</tr>
<tr>
<td>44</td>
<td>21.01</td>
<td>1190</td>
<td>44</td>
</tr>
<tr>
<td>Final Firing Rate per Burner</td>
<td>25,000</td>
<td>24,000</td>
<td>23,000</td>
</tr>
</tbody>
</table>

Note: All calculations are performed by using the first three columns of information only. Before beginning any calculations, determine the individual burner Btu size and heating value at Sea Level for the installation site. Each value shown in the Heat Value column is per burner at 3.5" W.C.

NOTE:
Heat Value at Sea Level, for the location of the installation, is available from the Natural Gas Supplier to that site. Orifices for all altitudes are based on Sea Level values.

Divide the individual burner capacity (25,000 for 80 plus) by the Heat Value for the site to determine the Cubic Foot value at Sea Level, or divide burner capacity by the Cubic Foot value for the Heat Value. Once you have either the Cubic Foot Value or the Heat Value you can estimate the Sea Level orifice for the site. To select the corresponding high altitude orifice, locate the site elevation on the chart above and the orifice required at Sea Level from your calculation in the first column. The correct high altitude orifice that must be installed in each individual burner is the intersection of these two points on the chart above.
START-UP PROCEDURE

DIRECT SPARK IGNITION LIGHTING INSTRUCTIONS

This appliance is equipped with a direct spark ignition device. This device lights the main burners each time the room thermostat (closes) calls for heat. See lighting instructions on the furnace. During initial start-up, it is not unusual for odor or smoke to come out of any room registers. It is recommended to ensure proper ventilation by opening windows and doors, before initial firing. The furnace has a negative pressure switch that is a safety during a call for heat. The induced draft blower must pull a negative pressure on the heat exchanger to close the negative pressure switch. The induced draft blower must maintain at least the negative pressure switch set point for the furnace to operate. If the induced draft blower fails to close or maintain the closing of the negative pressure switch, a “no heat call” would result.

TO START FURNACE

1. Remove the control access door.

2. BE SURE THAT THE MANUAL GAS CONTROL HAS BEEN IN THE “OFF” POSITION FOR AT LEAST FIVE MINUTES. DO NOT ATTEMPT TO MANUALLY LIGHT THE MAIN BURNERS. FAILURE TO FOLLOW THIS WARNING CAN CAUSE A FIRE OR AN EXPLOSION RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

3. Turn off the furnace electrical power and set the room thermostat to the lowest setting.

4. Turn the gas control knob to the “On” position, or move the gas control lever to the “On” position.

5. Replace the control access door.

6. Turn on the electrical power.

7. Set the room thermostat to a point above room temperature to light the main burner. After the burners are lit, set room thermostat to a desired temperature.

TO SHUT DOWN FURNACE

1. Set the room thermostat to off and its lowest setting.

2. Turn manual gas stop to the closed position.

3. Turn off the electrical power to the furnace.

4. Remove burner compartment door.

5. Move the main gas valve knob or lever to the off position.

6. Replace the burner compartment door.

WARNING

SHOULD OVERHEATING OCCUR OR THE GAS SUPPLY FAIL TO SHUT OFF, SHUT OFF THE MANUAL GAS VALVE TO THE APPLIANCE BEFORE SHUTTING OFF THE ELECTRICAL SUPPLY. FAILURE TO DO SO CAN CAUSE AN EXPLOSION OR FIRE RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

Sequence of operation with a single stage heat thermostat

See the section of this book titled “Electrical Wiring - Thermostat” for a wiring diagram showing how to connect a thermostat.

NOTE: Single-stage heat operation is determined by the position of the jumper at P7 on the control board. Options are: 5 minutes between 1st and 2nd stage and 12 minutes between 1st and 2nd stage (see Figure 19).

Do not leave the jumper at P7 on the “NONE” position when using a single-stage thermostat with the timed staging feature. If the jumper is left on “NONE”, the furnace will never reach high heat.

a. Connect the “W” terminal on the thermostat to the “W” terminal on the control board.

b. When there is a call for heat, the “R” and “W” contacts close and the IFC runs a self check routine to verify that the pressure switch contacts are open. The limit switch contacts are constantly monitored.

c. The induced draft motor starts on high until the low pressure switch contacts close (a maximum of 60 seconds), and then changes to low speed. After a 30 second pre-purge, the spark ignitor energizes and the low stage of the gas valve opens, lighting the burners.

d. After the gas valve opens, the remote flame sensor must prove ignition for one second using the process of flame rectification. If the burners do not light, the system goes through another ignition sequence. It does this up to 4 times. (2 trials on low fire and 2 trials on high fire.)

e. The main blower starts on low speed 30 seconds after the burners light. The furnace operates on low fire for 5 or 12 minutes and then, if the thermostat is not satisfied, shifts to high fire, causing the draft inducer to go to high speed, the gas valve to 100% and the main blower goes to heat speed.

f. When the thermostat cycle ends, the gas valve closes, and the burners go out.

g. The draft inducer will continue running for a 10 second (low speed) or 5 second (high speed) post purge.

h. The main blower will run for 90 seconds on high speed or 120 seconds on low speed. (This timing is field adjustable, for 60, 90, 120 or 150 seconds). See Figure 24 for switch settings.

Sequence if the system doesn’t light or doesn’t sense flame:

a. If flame is not sensed within 8 seconds after the gas valve opens, the valve closes and the ignitor is de-energized. The induced draft motor will run for 60 seconds on low, stop momentarily, and then restart.

b. The ignition process goes through one more attempt on low fire. If this fails, there are two attempts on high fire with a 30 second inter-purge between trials. During high fire ignition attempts, the inducer steps to high speed, the high pressure switch closes (both pressure switch closes (both pressure switches are now closed), and the gas valve steps to 100%.

c. If there is no ignition after the 2nd trial on high fire, the furnace goes into soft lockout for one hour.

d. The sequence repeats after one hour delay and continues repeating until ignition is successful or the call for heat is terminated.

e. To reset the lockout, make and break power either at the thermostat or at the unit disconnect switch for 5 to 10 seconds. The furnace will then go through another set of trials for ignition (provided call for heat is still present).

f. If flame is established and maintained during the trial for ignition period and flame is lost, the gas valve is de-energized, the draft inducer continues to run, and control begins timing the inter-purge delay. The indoor blower motor will be energized and/or remain energized on low speed for low fire and high speed for high fire for the selected delay off time.

When the inter-purge delay is over, the control initiates another ignition trial period. The control will recycle up to 5 flame losses (4 re-cycles) within a single call for heat before going into lockout.

Sequence of operation with two stage heat thermostat

See the section of this book titled “Electrical Wiring - Thermostat” for a wiring diagram showing how to connect a thermostat.

Connect W1 and W2 terminals on the thermostat to W and W2 terminals on the control board.

Call for 1st stage heat

a. R and W thermostat contacts close and the control module runs a self-check routine. After the control module verifies that both sets of
The control board has six quick connect terminals for connecting motor speed leads. These are:

1. **LOW** – This is low speed. The motor runs on low when the furnace is in the low fire mode or when the thermostat is in the “FAN” position.
2. **COOL** – Factory wired at high speed. This may be changed if a lower cooling speed is desired.
3. **HEAT** – Factory wired at the normal high input blower speed.
4. **HEAT/COOL (H/C)** – Connect here if the required HEAT and COOL speeds are the same.

SETTING BLOWER TIMINGS

<table>
<thead>
<tr>
<th>Timings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 seconds</td>
<td>Pre-purge for spark igniter activation.</td>
</tr>
<tr>
<td>30 seconds</td>
<td>Main blower starts on low speed.</td>
</tr>
<tr>
<td>120 seconds</td>
<td>Main blower runs for 120 seconds.</td>
</tr>
<tr>
<td>60 seconds</td>
<td>Maximum of 60 seconds.</td>
</tr>
<tr>
<td>4 times</td>
<td>Maximum attempts for ignition.</td>
</tr>
</tbody>
</table>

FAN CONTROL

The furnace is equipped with an integrated furnace control which automatically starts the main blower 30 seconds after the gas valve opens. It stops the main blower a set time after the heat call ends. The off timing is controlled by the jumper at P6 on the control board. See Figure 24.

The integrated control board contains the low voltage terminals for the thermostat connection, and is located in the blower compartment.

Call for 2nd stage heat after 1st stage

R and W2 thermostat contacts close, calling for 2 stage heat. The induced draft motor then switches to high speed and the high pressure switch contacts close. The gas valve to switches to high fire and the main blower to switch to heating speed.

2nd stage heat satisfied, 1st stage heat still required.

R and W2 thermostat contacts open. The induced draft motor switches to low speed, the main blower motor switches to low speed and the gas valve changes to low fire. The furnace continues to run in this mode until the 1st stage heat call is satisfied. The system will shut down as noted in “c,” under 1st stage call for heat.

NOTE: Under extreme cold conditions, the 2-stage thermostat may call for the furnace to cycle between 1st and 2nd stage operation.

FIGURE 24

TWO-STAGE, 80 PLUS IFC JUMPER SELECTIONS

- If the None position is selected, the furnace will not operate, and the IFC terminal will be connected for time setting.
- Operation must be single stage if not selected.
- The jumper selection will be on the control board.

FIGURE 25

TYPICAL GAS VALVE

GAS VALVE #60-101921-02

- Gas Control Switch
- Low Fire Manifold Pressure Adjustment
- High Fire Manifold Pressure Adjustment
- Inlet Pressure Tap
- Outlet Pressure Tap
IMPORTANT: Do not connect any leads to the HEAT or COOL terminals if the HEAT/COOL terminal is used.

5. M1 – Connect unused motor lead.

The unit comes from the factory set to stop the blower 120 seconds after the thermostat is satisfied in heating and 45 seconds after the thermostat is satisfied in cooling. This timing can be field adjusted. To change the blower off timing, move the jumper of P6 to the appropriate location (see Figure 24).

GAS FURNACE (DIRECT DRIVE) INSTRUCTIONS FOR CHANGING BLOWER SPEED

WARNING

DISCONNECT THE ELECTRICAL SUPPLY TO THE FURNACE BEFORE ATTEMPTING TO CHANGE THE BLOWER SPEED. FAILURE TO DO SO CAN CAUSE ELECTRICAL SHOCK RESULTING IN SEVERE PERSONAL INJURY OR DEATH.

The blower motor is wired for blower speeds required for normal operation. The LOW speed, which is for the low fire operation should never be increased. The HEAT speed is factory wired for the regular high fire speed. This may be changed if required to maintain the proper rise range. Reconnect the unused lead to the M1 or M2 terminal. Check motor lead for speed designation. Do not reduce the heating speeds where it could cause the furnace air temperature rise to exceed the maximum outdoor air temperatures specified for the unit.

IMPORTANT: Always check air temperature rise after changing the heating speed for any reason.

It is recommended to use the next higher blower speed tap, if the main limit tripped at a premature condition.

ADJUSTING OR CHECKING FURNACE INPUT

The maximum gas supply pressure to the furnace should be 10.5” W.C. for natural gas. The minimum gas supply pressure for purposes of input adjustment to the furnace should be 5” W.C.

A properly calibrated manometer or gauge is required for accurate gas pressure readings.

1. When adjusting the furnace input, the high fire input should be checked. The high fire manifold pressure should be 3.5” W.C. Follow these steps to be sure the furnace is high fire mode:
 a. With a single stage thermostat, the furnace runs for 12 minutes on low fire before shifting to high fire. To be certain that it is on high fire, jump terminals “W” and “W2” on the control board in the blower compartment.
 b. With a two stage thermostat, set the thermostat to its highest setting to keep the furnace operating in the high fire mode.

2. To adjust high fire manifold pressure, remove the adjustment cover screw on the outlet end of the gas valve and turn the adjustment screw clockwise to increase the pressure and counterclockwise to reduce the pressure. Replace the cover screw securely. See Figure 25.

3. The low fire manifold pressure should be 1.7” W.C. As mentioned above, the furnace remains in the low fire mode for 12 minutes upon a heat call with a single stage thermostat. With a two stage thermostat, disconnect the thermostat lead to the “W2” terminal on the control board and the furnace will remain in the low fire mode. To adjust the pressure, remove the regulator cover, on top of the valve, and adjust as noted under Step 2, above. After the adjustment replace the screw cover securely.

NOTE: Use a 3/32” allen wrench for making the pressure adjustment.

LP GAS:

Furnaces for use on LP gas, the LP gas supply pressure must be set between 11.0” and 13.0” W.C. by means of the tank or branch supply regulators. The furnace manifold pressure should be set at 10” W.C. at the gas control valve. For elevations up to 1,000 feet, rating plate input ratings apply. For high altitudes (elevations 7,000 and over) and for any necessary major changes in the gas flow rate the orifice spud must be changed.

TO CHANGE ORIFICE SPUDS

1. Shut off the manual main gas valve and remove the gas manifold.
2. Replace the orifice spuds.
3. Reassemble in reverse order.
4. Turn the gas supply back on and check for leaks.
5. Check for proper operation and set proper manifold pressure.

Check of input is important to prevent overfiring of the furnace beyond its design-rated input. NEVER SET INPUT ABOVE THAT SHOWN ON THE RATING PLATE.

To check furnace input:

1. Make certain that all other gas appliances are shut off, with the exception of pilot burners.
2. Start the furnace
3. Time the meter to measure the time required to burn one cubic foot of gas.
4. Use Table 10 to determine input rate.

TABLE 10

<table>
<thead>
<tr>
<th>INPUT BTU/HR</th>
<th>METER SIZE CU. FT.</th>
<th>HEATING VALUE OF GAS BTU PER CU. FT.</th>
<th>900 MIN.</th>
<th>1000 MIN.</th>
<th>1100 MIN.</th>
<th>1200 MIN.</th>
<th>1300 MIN.</th>
<th>1400 MIN.</th>
<th>1500 MIN.</th>
<th>1600 MIN.</th>
<th>1700 MIN.</th>
<th>1800 MIN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>ONE 1</td>
<td>1 5</td>
<td>12 02 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEN 5</td>
<td>05 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75,000</td>
<td>ONE 7</td>
<td>04 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEN 5</td>
<td>05 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>ONE 5</td>
<td>03 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEN 5</td>
<td>05 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125,000</td>
<td>ONE 4</td>
<td>02 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEN 5</td>
<td>05 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150,000</td>
<td>ONE 3</td>
<td>01 24</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEN 5</td>
<td>05 12</td>
<td>10 16 12 08 04 01 18 14 10 07 04 01 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input BTU/HR = Heating Value of Gas (BTU/ft³) x 3600 x correction factor

Time in Seconds (for 1 cu.ft.) of Gas

Input BTU/HR = Time in Seconds (for 1 cu.ft.) of Gas
The importance of proper airflow over the heat exchanger cannot be over emphasized.

CAUTION

IT IS IMPORTANT THAT EACH DUCT SYSTEM BE SIZED AND INSTALLED FOR THE SPECIFIC APPLICATION BY PROPERLY APPLYING THE APPROPRIATE INDUSTRY ACCEPTED STANDARD. IF LESS THAN MINIMUM STANDARDS ARE APPLIED, THE EQUIPMENT USER COULD EXPECT TO EXPERIENCE HIGHER UTILITY BILLS, MAJOR COMPONENT FAILURE, VARYING DEGREES OF AIR NOISE OR OTHER UNSATISFACTORY ISSUES, OVER WHICH THE MANUFACTURER HAS NO CONTROL.

TEMPERATURE RISE CHECK

To determine if the airflow is correct, make a temperature rise check.

1. Insert a thermometer in the supply air duct as close to the furnace as possible yet out of a direct line from the heat exchanger. See Figure 25.
2. Insert a thermometer in the return air duct as close to the furnace as possible.
3. Operate the furnace.
4. When the thermometer in the supply air duct stops rising (approximately five minutes), subtract the return air temperature from the supply air temperature. The difference is the temperature rise.
5. Compare the measured temperature rise to the approved temperature rise range listed on the furnace name plate. See Figure 26.

If the measured temperature rise is above the approved range, the airflow is too low. More air must be moved by speeding up the blower, by removing restrictions in the duct system, or by adding more supply or return air duct. If the measured temperature rise is below the approved range, the airflow is too much. Use lower speed tap on the multi-speed blower.

IMPORTANT: The measured temperature rise should be in the middle of the range. See product specification sheet and name plate located on furnace.

IMPORTANT: Some high-efficiency filters have a greater than normal resistance to airflow. This can adversely affect furnace operation. BE SURE TO CHECK AIRFLOW if using any filter other than factory-provided filter.
BLOWER PERFORMANCE DATA – RGPQ UPFLOW/HORIZONTAL MODELS

<table>
<thead>
<tr>
<th>MODEL (BTU)</th>
<th>BLOWER SIZE</th>
<th>MOTOR H.P.</th>
<th>CFM AIR DELIVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXTERNAL STATIC PRESSURE INCHES WATER COLUMN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.1 .2 .3 .4 .5 .6 .7</td>
</tr>
<tr>
<td>50,000</td>
<td>11 x 6</td>
<td>1/2</td>
<td>LOW 675 655 635 610 585 555 520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 950 930 905 880 860 830 800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1115 1090 1070 1040 1015 985 945</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 1270 1250 1225 1200 1165 1130 1085</td>
</tr>
<tr>
<td>75,000</td>
<td>11 x 7</td>
<td>1/2</td>
<td>LOW 921 897 872 845 818 795 760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1093 1066 1039 1008 977 941 905</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1241 1212 1183 1150 1118 1076 1033</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 1393 1359 1326 1293 1259 1214 1169</td>
</tr>
<tr>
<td>75,000</td>
<td>11 x 7</td>
<td>3/4</td>
<td>LOW 1245 1220 1195 1165 1135 1105 1065</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1555 1515 1475 1435 1395 1350 1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1810 1755 1705 1645 1585 1530 1470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 2050 1985 1915 1845 1785 1715 1655</td>
</tr>
<tr>
<td>100,000</td>
<td>11 x 7</td>
<td>1/2</td>
<td>LOW 925 890 865 835 810 775 745</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1050 1040 1030 990 960 920 890</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1220 1195 1160 1140 1105 1065 1020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 1360 1327 1295 1263 1231 1179 1128</td>
</tr>
<tr>
<td>100,000</td>
<td>11 x 10</td>
<td>3/4</td>
<td>LOW 1295 1275 1250 1225 1195 1165 1135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1645 1615 1580 1550 1501 1465 1425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 2045 2000 1955 1905 1845 1785 1720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 2320 2260 2200 2130 2060 1985 1910</td>
</tr>
<tr>
<td>125,000</td>
<td>11 x 10</td>
<td>3/4</td>
<td>LOW 1280 1275 1265 1245 1215 1185 1145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1645 1635 1615 1590 1560 1520 1470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 2050 2015 1960 1935 1885 1835 1775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 2365 2310 2250 2185 2115 2035 1950</td>
</tr>
<tr>
<td>150,000</td>
<td>11 x 10</td>
<td>3/4</td>
<td>LOW 1270 1250 1220 1195 1165 1135 1105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1620 1595 1570 1545 1515 1480 1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 2010 1985 1960 1915 1850 1800 1730</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 2340 2275 2215 2145 2080 2010 1940</td>
</tr>
</tbody>
</table>

BLOWER PERFORMANCE DATA – RGLQ DOWNFLOW MODELS

<table>
<thead>
<tr>
<th>MODEL (BTU)</th>
<th>BLOWER SIZE</th>
<th>MOTOR H.P.</th>
<th>CFM AIR DELIVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXTERNAL STATIC PRESSURE INCHES WATER COLUMN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.1 .2 .3 .4 .5 .6 .7</td>
</tr>
<tr>
<td>50,000</td>
<td>11 x 6</td>
<td>1/2</td>
<td>LOW 655 630 600 565 532 500 467</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 975 943 915 886 852 813 770</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1180 1140 1105 1067 1027 980 924</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 1335 1290 1250 1202 1157 1110 1060</td>
</tr>
<tr>
<td>75,000</td>
<td>11 x 7</td>
<td>1/2</td>
<td>LOW 910 887 863 839 814 776 738</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1074 1054 1034 1007 979 944 908</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1229 1207 1184 1159 1134 1099 1063</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 1409 1385 1361 1329 1297 1260 1223</td>
</tr>
<tr>
<td>75,000</td>
<td>11 x 7</td>
<td>1/2</td>
<td>LOW 895 874 852 825 798 766 734</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1052 1033 1013 991 968 930 891</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 1238 1217 1196 1169 1143 1104 1044</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 1383 1366 1348 1317 1286 1245 1203</td>
</tr>
<tr>
<td>100,000</td>
<td>11 x 7</td>
<td>3/4</td>
<td>LOW 1374 1356 1339 1323 1286 1249 1212</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1709 1686 1663 1635 1607 1562 1516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 2132 2085 2038 1988 1937 1882 1827</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 2362 2300 2237 2173 2108 2036 1964</td>
</tr>
<tr>
<td>100,000</td>
<td>11 x 10</td>
<td>3/4</td>
<td>LOW 1315 1292 1269 1250 1231 1194 1157</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1618 1597 1576 1552 1528 1486 1443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 2065 2025 1984 1938 1891 1824 1756</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI 2275 2219 2163 2103 2042 1982 1921</td>
</tr>
<tr>
<td>125,000</td>
<td>11 x 10</td>
<td>3/4</td>
<td>LOW 1300 1280 1230 1205 1170 1115 1030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-LO 1675 1650 1620 1570 1545 1485 1425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MED-HI 2105 2075 2035 1990 1955 1900 1815</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI – 2340 2290 2215 2145 2080 1995</td>
</tr>
</tbody>
</table>
SAFETY FEATURES

LIMIT CONTROL
The high limit cut-off temperature is set at the factory and cannot be adjusted. The temperature setting prevents the air temperature leaving the furnace from exceeding the maximum outlet air temperature, which, if exceeded, will shut the furnace down.

There are several reasons for a limit switch to open and almost always involve low airflow through the furnace.
1. A dirty or restricted air filter.
2. A dirty or restricted cooling coil.
3. Undersized or restricted return air system.
4. Undersized or restricted supply air system.
5. A problem affecting the main blower:
 A. A wrong speed tap selection.
 B. Failing motor bearings.
 C. Low voltage to the motor.
 D. Dirty blower wheel.
 E. Wrong motor rotation.
 F. Blower wheel slipping on the motor shaft.
6. Overfiring the furnace with too much gas pressure.

FLAME ROLL-OUT SAFETY SWITCHES
Furnaces are equipped with safety switches to protect against flame roll-out conditions in the burner compartment, which, if tripped, will terminate the heating cycle. In the event of a flame roll-out condition, the switch will shut the furnace down.

Switches for the RGPO furnaces are located on either side of the burner cover plate and just above the burners on the blower divider panel. The RGLQ requires only one switch on the left side of burner cover plate. If a switch is tripped, it must be manually reset. DO NOT jumper or reset this switch. If this switch should trip, a qualified installer, service agency or the gas supplier should be called to diagnose and/or correct the source of tripping. If this unit is mounted in a closet, the door must be closed when making this check.

PRESSURE SWITCH
This furnace is equipped with a normally-open pressure switch that monitors pressure conditions within the furnace vent system during the heating cycle.

There are several reasons for the pressure switch not to close.
1. An inoperative induced draft blower.
2. A loose or leaky pressure switch hose.
3. A blockage in the vent.
4. Severe downdrafts canceling the draft from the inducer fan.
5. A leaky gasket at the induced draft blower.
6. Improperly sized or installed vent.

The pressure switch contacts must open before the unit can go through another heating cycle.

See troubleshooting chart in this book for troubleshooting recommendations.
MAINTENANCE

WARNING

DISCONNECT MAIN ELECTRICAL POWER TO THE UNIT BEFORE ATTEMPTING ANY MAINTENANCE. FAILURE TO DO SO CAN CAUSE ELECTRICAL SHOCK RESULTING IN SEVERE PERSONAL INJURY OR DEATH.

FILTERS

Filter application and placement are critical to airflow, which may affect the heating and cooling system performance. Reduced airflow can shorten the life of the systems major components, such as motor, limits, elements, heat exchanger, evaporator coil or compressor. Consequently, we recommend that the return air duct system have only one filter location. The most common location will be inside the furnace or air handler or a filter base. For systems with a return air filter grill or multiple filter grills, can have a filter installed at each of the return air openings DO NOT DOUBLE FILTER THE RETURN AIR DUCT SYSTEM. DO NOT FILTER THE SUPPLY AIR DUCT SYSTEM.

If high efficiency filters or electronic air cleaners are used in the system, it is important that the airflow is not reduced to maximize system performance and life. Always verify that the systems airflow is not impared by the filtering system that has been installed, by performing a temperature rise and temperature drop test.

Keep the air filters clean at all times. Vacuum dirt from filter, wash with detergent and water, air dry thoroughly and reinstall.

See Table 10 and Figures 28 through 30 for proper filters sizes and locations.

1. 14"-50,000 BTUH unit requires removal of 3 1/2" segment of filter and frame to get proper width for a bottom filter.
2. 21"-100,000 BTUH unit requires removal of 3 1/2" segment of filter and frame to get proper width for a side filter.
3. 24 1/2"-125,000 and 150,000 BTUH units require removal of 7" segment of filter and frame to get proper width for a side filter.

TABLE 10 FILTER SIZES

<table>
<thead>
<tr>
<th>FURNACE WIDTH</th>
<th>INPUT BTUH</th>
<th>BOTTOM SIZE</th>
<th>SIDE SIZE</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>50</td>
<td>12 X 25"</td>
<td>15 X 25"</td>
<td>1</td>
</tr>
<tr>
<td>17 1/2"</td>
<td>75 & 100</td>
<td>15 1/2 X 25"</td>
<td>15 X 25"</td>
<td>1</td>
</tr>
<tr>
<td>21"</td>
<td>100</td>
<td>19 1/2 X 25"</td>
<td>15 X 25"</td>
<td>1</td>
</tr>
<tr>
<td>24 1/2"</td>
<td>125 & 150</td>
<td>22 X 25"</td>
<td>15 X 25"</td>
<td>1</td>
</tr>
</tbody>
</table>

*NOTE: Some filters must be ordered or resized to fit certain units and applications.

IMPORTANT: Do not operate the system without filters. A portion of the dust entrained in the air may temporarily lodge in the air duct runs and at the supply registers. Any circulated dust particles will be heated and charred by contact with the furnace heat exchanger. This sooty residue will soil ceilings, walls, drapes, carpets, and other household articles. Soot damage may also result with, or without, filters in place, when certain types of candles are burned, or candlewicks are left untrimmed.
FIGURE 29
UPFLOW FILTER RETAINING ROD (SIDE RETURN)

CUT-OUT AND DRILL DETAIL

FILTER ROD SUPPORT ANGLE
AE-60520-01

FILTER SUPPORT ANGLE
AE-61883-01

SOLID BOTTOM MAY BE ORDERED FROM THE FACTORY.

FIGURE 30
DOWNSLOW FILTER INSTALLATION

JACKET

FILTER

FILTER ROD SUPPORT ANGLE
AE-60520-01

FILTER SUPPORT ANGLE
(SEE ANGLE DETAIL)
AE-61883-01

ANGLE DETAIL

ATTACH WITH SHEET METAL SCREWS (2 REQ'D)

FILTER ROD SUPPORT ANGLE
AE-60520-01

FILTER SUPPORT ANGLE
AE-61883-01

ROD & FILTER SUPPORT ANGLE ASSEMBLY
SYSTEM OPERATION INFORMATION

Advise The Customer To:

1. Keep the air filters clean. The heating system will operate better, more efficiently and more economically.
2. Arrange the furniture and drapes so that the supply air registers and the return air grilles are unobstructed.
3. Close doors and windows. This will reduce the heating load on the system.
4. Avoid excessive use of kitchen & bathroom exhaust fans.
5. Do not permit the heat generated by television, lamps or radios to influence the thermostat operation.
6. Except for the mounting platform, keep all combustible articles three feet from the furnace and vent system.
7. IMPORTANT: Replace all blower doors and compartment covers after servicing the furnace. Do not operate the unit without all panels and doors securely in place.
8. Proper operation of the system with constant air circulation.

WARNING

HOLES IN THE VENT PIPE OR HEAT EXCHANGER CAN CAUSE TOXIC FUMES TO ENTER THE HOME RESULTING IN CARBON MONOXIDE POISONING OR DEATH. THE VENT PIPE OR HEAT EXCHANGER MUST BE REPLACED IF THEY LEAK.

• IMPORTANT: It is recommended that at the beginning of the heating season and approximately midway in the heating season a visual inspection be made of the main burner flames for the desired flame appearance by a qualified installer, service agency, or the gas supplier.

• IMPORTANT: It is also recommended that at the beginning of the heating season, the flame sensor be cleaned with steel wool by a qualified installer, service agency, or the gas supplier.

• IMPORTANT: It is recommended that an annual inspection and cleaning of all furnace markings be made to assure legibility. Attach a replacement marking, which can be obtained through the distributor, if any are found to be illegible or missing.

IMPORTANT: FOR Nox MODELS – At the beginning of the heating season a visual inspection of the Nox device should be made to ensure they have not become obstructed by insects nests or anything else which may effect performance.

WARNING

COMBUSTIBLE MATERIAL MUST NOT BE PLACED ON OR AGAINST THE FURNACE JACKET OR WITHIN THE SPECIFIED CLEARANCES OF THE VENT PIPE. THE AREA AROUND THE FURNACE MUST BE KEPT CLEAR AND FREE OF ALL COMBUSTIBLE MATERIALS INCLUDING GASOLINE AND OTHER FLAMMABLE VAPORS AND LIQUIDS. PLACEMENT OF COMBUSTIBLE MATERIALS ON, AGAINST OR AROUND THE FURNACE JACKET CAN CAUSE AN EXPLOSION OR FIRE RESULTING IN PROPERTY DAMAGE, PERSONAL INJURY OR DEATH. THE FURNACE OWNER SHOULD BE CAUTIONED THAT THE FURNACE AREA MUST NOT BE USED AS A BROOM CLOSET OR FOR ANY OTHER STORAGE PURPOSES.

ANNUAL INSPECTION

The furnace should operate for many years without excessive scale build-up in the flue passageways, however, it is recommended that a qualified installer, service agency, or the gas supplier actually inspect the flue passageways, the vent system and the main burners for continued safe operation paying particular attention to deterioration from corrosion or other sources.

LUBRICATION

The indoor blower motor and induced draft motor are prelubricated by the motor manufacturer and do not require further attention. The motors must be cleaned periodically by a qualified installer, service agency, or the gas supplier to prevent the possibility of overheating due to an accumulation of dust and dirt on the windings or on the motor exterior. Air filters should be kept clean. Dirty filters can restrict airflow and results in motor overheating.

REPLACEMENT PARTS

Contact your local distributor for a complete parts list.

NOx MODELS

When converting furnaces equipped with NOx inserts to LP gas, remove the NOx insert assemblies.

TROUBLESHOOTING

Refer to Figure 32 for determining cause of unit problems.

WIRING DIAGRAM

Figure 33 is a complete wiring diagram for the furnace and power sources.
FIGURE 32
INTEGRATED FURNACE CONTROL (IFC) TROUBLESHOOTING GUIDE
FOR UTEC 1095-101

TWO-STAGE INTEGRATED FURNACE CONTROL (IFC)
TROUBLESHOOTING GUIDE USING TWO-STAGE THERMOSTAT

NOTE: Most failures are not due to the IFC. Double check all other possibilities, including the ground connection, before replacing the IFC.

START
1. Set TAW switch to "AUTO".
2. Set thermostat to call for heat (set temp. differential to greater than 10°F)
3. Ensure units in high fire (W to C = 24V and W2 to C = 24V).

PREPURGE
Does the IFC Start on High Speed? NO

Furnaces
Does ICM run on high speed for a few seconds and then switch to low speed? NO

IGNITION TRIAL
Spark igniter (SI) Energizes? NO

Does Main Burner Light and stay lit? **
80+ = High Fire
80- = Low Fire

Furnaces
Does Inducer switch to high speed? NO

80+ Furnaces, YES

IBM "ON" DELAY
Does ICM start at high speed 11-20 seconds after burners light? YES

B1M (N) DELAY
Does main burner remain lit until heat call ends? YES

STANDBY HEAT HI

POWER LED ON? YES

24V on W to W2 to IFC? NO

"STATUS" LED (ON, STEADY ON, or OFF) BLINKING

LENS BLINK CODES

GO TO I

DOES ICM run indefinitely? NO

YES

FOR TWIN units, check that both 1CM and 2CM are connected between 1CM and 2CM, and 2CM and 2CM.

For TWIN units, ensure transformers are in phase (if out of phase, Name LED will be OFF). For non-TWIN units, ensure "TWIN" is in the single (OFF) position.

NOTE: ECM furnaces cannot be twinfed!

IGNITION TRIAL
Is the Gas Valve Energized at the correct ratio? NO

GO TO I

DEAD夜晚
Does gas valve energized on high limit? YES

GO TO J

IBM "ON" DELAY
Does ICM start at high speed 11-20 seconds after burners light? YES

B1M (N) DELAY
Does main burner remain lit until heat call ends? YES

STANDBY HEAT HI

PS dropping out? NO

Check ICM* NO

Check fan limit switch setting, Check ICM, Check high limit switch setting.

CONTINUED→

CONTINUED→
FIGURE 32
TROUBLESHOOTING FLOWCHART (CONTINUED)

CHECK:
- Ensure no restrictions, such as dirty filters, dampers, closed registers, etc.
- IMETS - ensure good wire and connections between IFC and all limits.
- Make sure limits are not open when controlling temperature is within a specified range.
- IMETS - ensure relay and overtemperature limits do not need to be reset. Make sure no flame failure in a burner compartment due to
- Shorts of flame or heat exchanger.
- NOSE - ensure furnace is not overtemperature when it is above
- Switching range. Check gas valve, proper line size, gas pressure, etc.

HIGH HEAT CALL END

Output High Heat Call by setting selector all 1/2 to 2 degrees of normal temp.
Verify 24V between W2 and C, and no voltage between NC and C before grounding.

W = OFF

W = ON

W O = OFF

Does Gas valve switch to low fire?

YES

NO

Does IOM switch to low speed and stay on continuously at low speed after switching?

YES

NO

Does IOM shut off?

YES

NO

Does IOM drop to low speed

YES

NO

STANDBY LOW HEAT

Does furnace continue to operate at low

the until thermostat satisfied or high

heat turns on?

YES

NO

Does thermostat maintain reasonable normal

temperature near setpoint?

YES

NO

END HEAT CALL

Set thermostat to off position.

Does gas valve shut off immediately?

YES

NO

POST-PURGE

Does IOM shut off after 1 second post-purge?

YES

NO

IBM "OFF" DELAY

Does IBM shut off after a max. of 3 min.

YES

NO

STAND BY

Heat mode: heal/heat

REPEAT THIS PROCEDURE UNTIL TROUBLE-FREE OPERATION IS OBTAINED.